カテゴリー: 統計学

  • 畳み込み積分がよくわかる(正規分布どうし、再生性)

    畳み込み積分がよくわかる(正規分布どうし、再生性)

    「畳み込み積分が、わからない、解けない?」と困っていませんか?

    こういう疑問に答えます。

    本記事のテーマ

    畳み込み積分がよくわかる(正規分布どうし、再生性)
    • ①畳み込み積分とは
    • ➁畳み込み積分(X+Y=Z)
    • ➂畳み込み積分(X-Y=Z)
    [themoneytizer id=”105233-2″]

    QCに必要な数学問題集をを販売します!

    QC検定®1級合格したい方、QCに必要な数学をしっかり学びたい方におススメです。
    QC検定®1級、2級、統計検定2級以上の数学スキルを磨くのに苦戦していませんか? 広大すぎる統計学、微分積分からQC・統計に勝てるための60題に厳選した問題集を紹介します。是非ご購入いただき、勉強してスキルを高めましょう。

    ①畳み込み積分とは

    畳み込み積分の基本をまとめた関連記事を確認ください。
    簡単にわかる解説と、身近な事例を挙げています。高校数学で理解できるレベルなので安心ください。

    畳み込み積分がよくわかる(一様分布どうし)
    畳み込み積分が計算できますか?本記事では畳み込み積分のイメージを高校数学を使ってわかりやすく解説し、さらに一様分布を使った畳み込み積分の計算を途中経過を一切端折らずに解説しています。畳み込み積分の計算ができず困っている方は必見です。

    ➁畳み込み積分(X+Y=Z)

    正規分布どうしの畳み込み積分を解析します。これがいわゆる「再生性」を確認する計算になります。計算を簡単にするため平均μ=0、標準偏差σ=1の正規分布で計算します。

    例題

    2つの関数
    ●\(f(x)\)= \(\frac{1}{\sqrt{2π}} e^{-\frac{1}{2}x^2}\)
    ●\(g(y)\)= \(\frac{1}{\sqrt{2π}} e^{-\frac{1}{2}y^2}\)
    において、Z=X+Yを満たす確率密度関数\(h(z)\)を作れ。

    難しい!と思ってしまいますが、落ち着いて解きましょう。次の3stepで解いていきます。

    1. 畳み込み積分の式を作る
    2. 積分区間を確認(ここが一番難しい)
    3. 積分区間の場合分けに合わせて丁寧に計算

    解法step1(畳み込み積分の式を作る)

    \( h(x)= \displaystyle \int_{-\infty}^{\infty} f(t)g(x-t)dt \)

    \((t)+(x-t)=x\)の関係が成り立っています。

    解法step2(積分区間を確認)

    x,yの制約条件はなく、全領域です。

    積分区間は全領域[-∞,∞]で、畳み込み積分をします。

    難しそうに見えますが、この場合分けも高校数学、領域のところで学ぶ内容です。

    解法step3(積分計算)

    畳み込み積分

    \( h(z)= \displaystyle \int_{-\infty}^{\infty} f(x)g(z-x)dx \)
    =\(\displaystyle \int_{-\infty}^{\infty} \frac{1}{\sqrt{2π}} e^{-\frac{1}{2}x^2}・\frac{1}{\sqrt{2π}} e^{-\frac{1}{2}(z-x)^2} dx \)
    =\(\frac{1}{2π}\displaystyle \int_{-\infty}^{\infty} e^{-\frac{1}{2}(2(x-\frac{z}{2})^2+\frac{z^2}{2})} dx \)
    =\(\frac{1}{2π} e^{-\frac{1}{2}・\frac{z^2}{2}} \displaystyle \int_{-\infty}^{\infty} e^{-\frac{1}{2}・2(x-\frac{z}{2})^2} dx \) ⇒(式1)

    ここで、
    \( \displaystyle \int_{-\infty}^{\infty} e^{-\frac{1}{2}・2(x-\frac{z}{2})^2} dx \)
    において、
    \(t=x-\frac{z}{2}\)とおくと、\(dt=dx\)なので、代入すると、
    \( \displaystyle \int_{-\infty}^{\infty} e^{-\frac{1}{2}・2t^2} dt \)

    この式は、ガウス積分となって
    \( \displaystyle \int_{-\infty}^{\infty} e^{-\frac{1}{2}・2t^2} dt \)=\(\sqrt{π}\)

    ●ガウス積分
    \( \displaystyle \int_{-\infty}^{\infty} e^{-ax^2} dx \)=\(\frac{\sqrt{π}}{\sqrt{a}}\) (\( a > 0 \))
    (教科書に載っていますし、是非証明してみてください。)

    (式1)は
    =\(\frac{1}{2\sqrt{π}} e^{-\frac{1}{2}・\frac{z^2}{2}} \)
    =\(\frac{1}{\sqrt{2π}・\sqrt{2}} e^{-\frac{(z-0)^2}{2(\sqrt{2})^2}} \)⇒(式2)

    平均μ、標準偏差σの正規分布の式は
    \(\frac{1}{\sqrt{2π}・σ} e^{-\frac{(z-μ)^2}{2σ^2}} \)
    ですから、(式2)は
    μ=0,σ=\(\sqrt{1+1}\)=\(\sqrt{2}\)
    を代入したものとなります。

    平均=0,標準偏差σ=1どうしの正規分布を畳み込み積分すると、
    平均=0+0=0,標準偏差σ=\(\sqrt{1+1}=\sqrt{2}\)の正規分布になる

    これは、正規分布の再生性という性質ですね。

    正規分布の再生性

    互いに独立なN(\(μ_1\),\(σ_1^2\))、N(\(μ_2\),\(σ_2^2\))の正規分布において、
    N(\(aμ_1+bμ_2\),\(a^2σ_1^2+b^2σ_2^2\))も正規分布になる

    証明は正規分布の式を変形していくので、煩雑ですが淡泊です。本記事では割愛します。

    正規分布どうしの畳み込み積分もできましたね!

    ➂畳み込み積分(X-Y=Z)

    X+Y=ZからX-Y=Zに変えますが、解き方は全く同じです。でも端折らずに解説します。統計学は途中経過を端折ると読者が困ってしまいますから。

    2つの関数
    ●\(f(x)\)= \(\frac{1}{\sqrt{2π}} e^{-\frac{1}{2}x^2}\)
    ●\(g(y)\)= \(\frac{1}{\sqrt{2π}} e^{-\frac{1}{2}y^2}\)
    において、Z=X-Yを満たす確率密度関数\(h(z)\)を作れ。

    難しい!と思ってしまいますが、落ち着いて解きましょう。次の3stepで解いていきます。

    1. 畳み込み積分の式を作る
    2. 積分区間を確認(ここが一番難しい)
    3. 積分区間の場合分けに合わせて丁寧に計算

    解法step1(畳み込み積分の式を作る)

    \( h(x)= \displaystyle \int_{-\infty}^{\infty} f(t)g(t-x)dt \)

    \((t)-(t-x)=x\)の関係が成り立っています。

    解法step2(積分区間を確認)

    x,yの制約条件はなく、全領域です。

    積分区間は全領域[-∞,∞]で、畳み込み積分をします。

    難しそうに見えますが、この場合分けも高校数学、領域のところで学ぶ内容です。

    解法step3(積分計算)

    \( h(z)= \displaystyle \int_{-\infty}^{\infty} f(x)g(z-x)dx \)
    =\(\displaystyle \int_{-\infty}^{\infty} \frac{1}{\sqrt{2π}} e^{-\frac{1}{2}x^2}・\frac{1}{\sqrt{2π}} e^{-\frac{1}{2}(x-z)^2} dx \)
    =\(\displaystyle \int_{-\infty}^{\infty} \frac{1}{\sqrt{2π}} e^{-\frac{1}{2}x^2}・\frac{1}{\sqrt{2π}} e^{-\frac{1}{2}(z-x)^2} dx \)
    となり、実は、

    Z=X+Yと同じ確率密度関数の式になります。

    なので、ここから先は、➁で解析した結果と同じになります。

    いろいろな関数を使って畳み込み積分を見て慣れていきましょう!

    本記事の内容は、ほぼ高校数学で解けましたね!

    まとめ

    「畳み込み積分がよくわかる(畳み込み積分がよくわかる(正規分布どおし、再生性))」を解説しました。

    • ①畳み込み積分とは
    • ➁畳み込み積分(X+Y=Z)
    • ➂畳み込み積分(X-Y=Z)

  • 畳み込み積分がよくわかる(指数分布と指数分布)

    畳み込み積分がよくわかる(指数分布と指数分布)

    「畳み込み積分が、わからない、解けない?」と困っていませんか?

    こういう疑問に答えます。

    本記事のテーマ

    畳み込み積分がよくわかる(指数分布と指数分布)
    • ①畳み込み積分とは
    • ➁畳み込み積分(X+Y=Z)
    • ➂畳み込み積分(X-Y=Z)
    [themoneytizer id=”105233-2″]

    QCに必要な数学問題集をを販売します!

    QC検定®1級合格したい方、QCに必要な数学をしっかり学びたい方におススメです。
    QC検定®1級、2級、統計検定2級以上の数学スキルを磨くのに苦戦していませんか? 広大すぎる統計学、微分積分からQC・統計に勝てるための60題に厳選した問題集を紹介します。是非ご購入いただき、勉強してスキルを高めましょう。

    ①畳み込み積分とは

    畳み込み積分の基本をまとめた関連記事を確認ください。
    簡単にわかる解説と、身近な事例を挙げています。高校数学で理解できるレベルなので安心ください。

    畳み込み積分がよくわかる(一様分布どうし)
    畳み込み積分が計算できますか?本記事では畳み込み積分のイメージを高校数学を使ってわかりやすく解説し、さらに一様分布を使った畳み込み積分の計算を途中経過を一切端折らずに解説しています。畳み込み積分の計算ができず困っている方は必見です。

    ➁畳み込み積分(X+Y=Z)

    指数分布通しの場合、+の畳み込みをn回繰返すと、ガンマ分布の式が導出できます! 難しい式ですが、畳み込み積分を丁寧に解けば、できます! ガンマ分布を自分のものにしましょう。

    例題

    2つの関数
    ●\(f(x)\)= \(λ e^{-λx}\) (0 ≤ x) それ以外は0
    ●\(g(y)\)=\(λ e^{-λy}\) (0 ≤ y) それ以外は0
    において、Z=X+Yを満たす確率密度関数\(h(z)\)を作れ。

    難しい!と思ってしまいますが、落ち着いて解きましょう。次の3stepで解いていきます。

    1. 畳み込み積分の式を作る
    2. 積分区間を確認(ここが一番難しい)
    3. 積分区間の場合分けに合わせて丁寧に計算

    解法step1(畳み込み積分の式を作る)

    \( h(x)= \displaystyle \int_{-\infty}^{\infty} f(t)g(x-t)dt \)

    \((t)+(x-t)=x\)の関係が成り立っています。

    解法step2(積分区間を確認)

    x,yの制約条件は 0 ≤ x, 0 ≤ yです。

    領域を図示します。

    畳み込み積分3-1

    その領域内で z=x+yを考えます。

    z=x+yをy=-x+zとして、xy平面で傾き-1,y切片zの直線を考える

    畳み込み積分2-2

    y=-x+zが積分領域内にどう入るかによって場合分けを網羅する!

    すると、下図のように2パターン積分区間が変わります。

    畳み込み積分3-2

    ●①は(x,y)=(0,0)より上(つまり0 ≤ z)なので、図のように、x=0~zの区間で積分
    ●➁は(x,y)=(0,0)以下(つまりz ≤ 0)で、積分領域外なので、h(z)=0

    という2つの場合分けをして、畳み込み積分をします。

    難しそうに見えますが、この場合分けも高校数学、領域のところで学ぶ内容です。

    x,yの積分領域に制限があると、畳み込み積分は場合分けして積分しないといけない面倒臭さがあります。

    解法step3(積分計算)

    ➁0 ≤ zのとき

    \( h(z)= \displaystyle \int_{-\infty}^{\infty} f(x)g(z-x)dx \)
    =\(\displaystyle \int_{0}^{z} λ e^{-λx}・λ e^{-λ(z-x)} dx \)
    =\( λ^2 e^{-λz} \left[ x \right]_0^z\)
    =\( λ^2 z e^{-λz} \)

    ➁z ≤ 0のとき

    積分領域外なので、h(z)=0

    できましたね!

    γ分布への導出

    γ分布への導出は怖くない!

    先ほどの\(f(x)\),\(g(y)\)を\(f_1(x)\),\(f_2(x)\)とすると、
    \(f(x)\)=\(f_1(x)\)= \(f_2(x)\)= \(λ e^{-λx}\)
    \(f_1*f_2(x)\)=\( λ^2 z e^{-λz} \)
    ですね。

    では、\(f_1*f_2*f_3(x)\)はどうなりますか?
    \(f_1*f_2*f_3(x)\)= \((f_1*f_2)*(f_3)(x)\)
    として、

    \(f_1*f_2*f_3(x)\)= \(\displaystyle \int_{-\infty}^{\infty}(f_1*f_2(x))(f_3(z-x))dx \)
    =\(\displaystyle \int_{0}^{z} λ^2 x e^{-λx}・λ e^{-λ(z-x)} dx \)
    =\(λ^3 e^{-λz} \displaystyle \int_{0}^{z} x dx \)
    =\( \frac{1}{2}λ^3 e^{-λz} \left[ x \right]_0^z\)
    =\( \frac{1}{2}λ^3 z^2 e^{-λz} \)

    一般化すると、
    \(f_1*f_2*…*f_n(x)\)=\( \frac{(n-1)!}{λ^n x^{n-1}}e^{-λx} \)
    と表現でき、これがガンマ分布の式になります。

    証明は漸化式でも、数学的帰納法でもどちらでもOKです。高校数学の流れで十分解けますね。

    畳み込み積分がわかれば、ガンマ分布の式も怖くない!

    ➂畳み込み積分(X-Y=Z)

    X+Y=ZからX-Y=Zに変えますが、解き方は全く同じです。でも端折らずに解説します。統計学は途中経過を端折ると読者が困ってしまいますから。

    2つの関数
    ●\(f(x)\)= \(λ e^{-λx}\) (0 ≤ x) それ以外は0
    ●\(g(y)\)=\(λ e^{-λy}\) (0 ≤ y) それ以外は0
    において、Z=X-Yを満たす確率密度関数\(h(z)\)を作れ。

    難しい!と思ってしまいますが、落ち着いて解きましょう。次の3stepで解いていきます。

    1. 畳み込み積分の式を作る
    2. 積分区間を確認(ここが一番難しい)
    3. 積分区間の場合分けに合わせて丁寧に計算

    解法step1(畳み込み積分の式を作る)

    \( h(x)= \displaystyle \int_{-\infty}^{\infty} f(t)g(t-x)dt \)

    \((t)-(t-x)=x\)の関係が成り立っています。

    解法step2(積分区間を確認)

    x,yの制約条件は 0 ≤ x, 0 ≤ yです。

    領域を図示します。

    畳み込み積分3-3

    その領域内で z=x-yを考えます。

    z=x-yをy=x-zとして、xy平面で傾き1,y切片-zの直線を考える

    畳み込み積分2-5

    y=x-zが積分領域内にどう入るかによって場合分けを網羅する!

    すると、下図のように1パターン積分区間が変わります。

    畳み込み積分3-4

    ●①図のように、x=0~∞の区間で積分

    畳み込み積分をします。

    難しそうに見えますが、この場合分けも高校数学、領域のところで学ぶ内容です。

    x,yの積分領域に制限があると、畳み込み積分は場合分けして積分しないといけない面倒臭さがあります。

    解法step3(積分計算)

    \( h(z)= \displaystyle \int_{-\infty}^{\infty} f(x)g(x-z)dx \)
    =\(\displaystyle \int_{0}^{\infty} λ e^{-λx}・λ e^{-λ(x-z)} dx \)
    =\( λ^2 e^{λz} \left[ \frac{-1}{2λ} e^{-2λx} \right]_0^{\infty}\)
    =\( \frac{λ}{2} e^{λz} \)

    できましたね!

    いろいろな関数を使って畳み込み積分を見て慣れていきましょう!

    本記事の内容は、ほぼ高校数学で解けましたね!

    まとめ

    「畳み込み積分がよくわかる(一様分布と指数分布)」を解説しました。

    • ①畳み込み積分とは
    • ➁畳み込み積分(X+Y=Z)
    • ➂畳み込み積分(X-Y=Z)

  • 畳み込み積分がよくわかる(一様分布と指数分布)

    畳み込み積分がよくわかる(一様分布と指数分布)

    「畳み込み積分が、わからない、解けない?」と困っていませんか?

    こういう疑問に答えます。

    本記事のテーマ

    畳み込み積分がよくわかる(一様分布と指数分布)
    • ①畳み込み積分とは
    • ➁畳み込み積分(X+Y=Z)
    • ➂畳み込み積分(X-Y=Z)
    [themoneytizer id=”105233-2″]

    QCに必要な数学問題集をを販売します!

    QC検定®1級合格したい方、QCに必要な数学をしっかり学びたい方におススメです。
    QC検定®1級、2級、統計検定2級以上の数学スキルを磨くのに苦戦していませんか? 広大すぎる統計学、微分積分からQC・統計に勝てるための60題に厳選した問題集を紹介します。是非ご購入いただき、勉強してスキルを高めましょう。

    ①畳み込み積分とは

    畳み込み積分の基本をまとめた関連記事を確認ください。
    簡単にわかる解説と、身近な事例を挙げています。高校数学で理解できるレベルなので安心ください。

    畳み込み積分がよくわかる(一様分布どうし)
    畳み込み積分が計算できますか?本記事では畳み込み積分のイメージを高校数学を使ってわかりやすく解説し、さらに一様分布を使った畳み込み積分の計算を途中経過を一切端折らずに解説しています。畳み込み積分の計算ができず困っている方は必見です。

    ➁畳み込み積分(X+Y=Z)

    例題

    2つの関数
    ●\(f(x)\)=1 (0 ≤ x ≤ T) それ以外は0
    ●\(g(y)\)=\(e^{-ay}\) (0 ≤ y) それ以外は0 (定数\(a\)は正)
    において、Z=X+Yを満たす確率密度関数\(h(z)\)を作れ。

    難しい!と思ってしまいますが、落ち着いて解きましょう。次の3stepで解いていきます。

    1. 畳み込み積分の式を作る
    2. 積分区間を確認(ここが一番難しい)
    3. 積分区間の場合分けに合わせて丁寧に計算

    解法step1(畳み込み積分の式を作る)

    \( h(x)= \displaystyle \int_{-\infty}^{\infty} f(t)g(x-t)dt \)

    \((t)+(x-t)=x\)の関係が成り立っています。

    解法step2(積分区間を確認)

    x,yの制約条件は 0 ≤ x ≤ T, 0 ≤ yです。

    領域を図示します。

    畳み込み積分2-1

    その領域内で z=x+yを考えます。

    z=x+yをy=-x+zとして、xy平面で傾き-1,y切片zの直線を考える

    畳み込み積分2-2

    y=-x+zが積分領域内にどう入るかによって場合分けを網羅する!

    すると、下図のように3パターン積分区間が変わります。

    畳み込み積分2-3

    ●①は(x,y)=(T,0)より上(つまりT ≤ z)なので、図のように、x=0~Tの区間で積分
    ●➁は(x,y)=(0,0)以上①以下(つまり0 ≤ z ≤T)なので、図のように、x=0~zの区間で積分
    ●➂は(x,y)=(0,0)以下(つまりz ≤ 0)で、積分領域外なので、h(z)=0

    という3つの場合分けをして、畳み込み積分をします。

    難しそうに見えますが、この場合分けも高校数学、領域のところで学ぶ内容です。

    x,yの積分領域に制限があると、畳み込み積分は場合分けして積分しないといけない面倒臭さがあります。

    解法step3(積分計算)

    ①T ≤ zのとき

    \( h(z)= \displaystyle \int_{-\infty}^{\infty} f(x)g(z-x)dx \)
    =\(\displaystyle \int_{0}^{T} 1・ e^{-a(z-x)}dx \)
    =\( e^{-az} \frac{1}{a} \left[ e^{ax} \right]_0^T\)
    =\( \frac{1}{a} e^{-az} (e^{aT}-1)\)

    ➁0 ≤ z ≤Tのとき

    \( h(z)= \displaystyle \int_{-\infty}^{\infty} f(x)g(z-x)dx \)
    =\(\displaystyle \int_{0}^{z} 1・ e^{-a(z-x)}dx \)
    =\( e^{-az} \frac{1}{a} \left[ e^{ax} \right]_0^z\)
    =\( \frac{1}{a} (1-e^{-az})\)

    ➂z ≤ 0のとき

    積分領域外なので、h(z)=0

    できましたね!

    ➂畳み込み積分(X-Y=Z)

    X+Y=ZからX-Y=Zに変えますが、解き方は全く同じです。でも端折らずに解説します。統計学は途中経過を端折ると読者が困ってしまいますから。

    例題

    2つの関数
    ●\(f(x)\)=1 (0 ≤ x ≤ T) それ以外は0
    ●\(g(y)\)=\(e^{-ay}\) (0 ≤ y) それ以外は0 (定数\(a\)は正)
    において、Z=X-Yを満たす確率密度関数\(h(z)\)を作れ。

    難しい!と思ってしまいますが、落ち着いて解きましょう。次の3stepで解いていきます。

    1. 畳み込み積分の式を作る
    2. 積分区間を確認(ここが一番難しい)
    3. 積分区間の場合分けに合わせて丁寧に計算

    解法step1(畳み込み積分の式を作る)

    \( h(x)= \displaystyle \int_{-\infty}^{\infty} f(t)g(x-t)dt \)

    \((t)-(t-x)=x\)の関係が成り立っています。X+Yの場合との違いも意識して確認ください。

    解法step2(積分区間を確認)

    x,yの制約条件は 0 ≤ x ≤ T, 0 ≤ yです。

    領域を図示します。

    畳み込み積分2-4

    その領域内で z=x-yを考えます。

    z=x-yをy=x-zとして、xy平面で傾き1,y切片-zの直線を考える

    畳み込み積分2-5

    y=x-zが積分領域内にどう入るかによって場合分けを網羅する!

    すると、下図のように3パターン積分区間が変わります。

    畳み込み積分2-6

    ●①は(x,y)=(0,0)より上(つまり0 ≤ -z)なので、図のように、x=0~Tの区間で積分
    ●➁は(x,y)=(0,0)以上①以下(つまり-T ≤ -z ≤0)なので、図のように、x=-z~Tの区間で積分
    ●➂は(x,y)=(0,0)以下(つまり-z ≤ -T)で、積分領域外なので、h(z)=0

    -zがあるので、-1で割って再掲します。

    ●①は(x,y)=(0,0)より上(つまりz ≤ 0)なので、図のように、x=0~Tの区間で積分
    ●➁は(x,y)=(0,0)以上①以下(つまり0 ≤ z ≤T)なので、図のように、x=-z~Tの区間で積分
    ●➂は(x,y)=(0,0)以下(つまりT ≤ z)で、積分領域外なので、h(z)=0

    という3つの場合分けをして、畳み込み積分をします。

    難しそうに見えますが、この場合分けも高校数学、領域のところで学ぶ内容です。

    x,yの積分領域に制限があると、畳み込み積分は場合分けして積分しないといけない面倒臭さがあります。

    解法step3(積分計算)

    ここから

    ①z ≤ 0のとき

    \( h(z)= \displaystyle \int_{-\infty}^{\infty} f(x)g(x-z)dx \)
    =\(\displaystyle \int_{0}^{T} 1・ e^{-a(x-z)}dx \)
    =\( e^{az} (\frac{-1}{a}) \left[ e^{-ax} \right]_0^T\)
    =\( \frac{1}{a} e^{az} (1-e^{-aT})\)

    ➁0 ≤ z ≤Tのとき

    \( h(z)= \displaystyle \int_{-\infty}^{\infty} f(x)g(x-z)dx \)
    =\(\displaystyle \int_{-z}^{T} 1・ e^{-a(x-z)}dx \)
    =\( e^{az} (\frac{-1}{a}) \left[ e^{-ax} \right]_{-z}^T\)
    =\( \frac{1}{a} (e^{2az}-e^{a(z-T)})\)

    ➂ T ≤ zのとき

    積分領域外なので、h(z)=0

    できましたね!

    いろいろな関数を使って畳み込み積分を見て慣れていきましょう!

    本記事の内容は、ほぼ高校数学で解けましたね!

    まとめ

    「畳み込み積分がよくわかる(一様分布と指数分布)」を解説しました。

    • ①畳み込み積分とは
    • ➁畳み込み積分(X+Y=Z)
    • ➂畳み込み積分(X-Y=Z)

  • 畳み込み積分がよくわかる(一様分布どうし)

    畳み込み積分がよくわかる(一様分布どうし)

    「畳み込み積分が、わからない、解けない?」と困っていませんか?

    こういう疑問に答えます。

    本記事のテーマ

    畳み込み積分がよくわかる(一様分布どうし)
    • ①畳み込み積分とは
    • ➁身近な畳み込み積分の事例
    • ➂畳み込み積分(一様分布、離散系の場合)
    • ➃畳み込み積分(一様分布、連続系の場合)
    [themoneytizer id=”105233-2″]

    QCに必要な数学問題集をを販売します!

    QC検定®1級合格したい方、QCに必要な数学をしっかり学びたい方におススメです。
    QC検定®1級、2級、統計検定2級以上の数学スキルを磨くのに苦戦していませんか? 広大すぎる統計学、微分積分からQC・統計に勝てるための60題に厳選した問題集を紹介します。是非ご購入いただき、勉強してスキルを高めましょう。

    ①畳み込み積分とは

    まず、「畳み込み」でつまづく。。。

    「畳み込み」って何ですか?
    わかりません。。。
    畳を込む、積分?
    寝ようか?。。。 となっちゃう!

    なので、まず定義でつまづきます。さらに、言葉の定義と計算式の定義とリンクしないので、思考停止状態になります。

    「畳み込み」より目的が大事です。

    分布関数を足すために大事な計算!

    自分で分布関数を作ったり、信頼性工学などに出て来るガンマ分布のように、
    いくつかの分布関数を足し合わせていくプロセスが必要になります。

    「畳み込み」より「関数を合体させてい」くイメージです。

    畳み込み積分の定義

    実際の式はこれですね。

    \( h(x)= \displaystyle \int_{-\infty}^{\infty} f(t)g(x-t)dt \)

    ここで、わかりにくいのが、

    \(f(t)のtとg(x-t)で (t)+(x-t)=x\)の関係

    \((t)+(x-t)=x\)の関係性を抽象的に説明すると、理解できないので、身の回りの事例を紹介します!

    高校数学で、すでに畳み込み積分的なものがあります!

    ➁身近な畳み込み積分の事例

    2つ紹介します! 意外な2つです!

    展開式の項

    さて、問題です。次の式を展開して各係数を求めましょう。高1レベルです。

    \((a_3 x^3+ a_2 x^2+ a_1 x^1+ a_0)(b_2 x^2+ b_1 x^1+ b_0)\)

    普通に展開すればOKなので、係数表を作ります。

    指数 係数 係数のNoの和
    \(x^5\) \(a_3 b_2\) 3+2=5
    \(x^4\) \(a_3 b_1+a_2 b_2\) 3+1=4,2+2=4
    \(x^3\) \(a_3 b_0+a_2 b_1 + a_1 b_2\) 3+0=3,2+1=3,1+2=3
    \(x^2\) \(a_2 b_0+a_1 b_1\) 2+0=2,1+1=2
    \(x^1\) \(a_1 b_0+a_0 b_1\) 1+0=1,0+1=1
    定数 \(a_0 b_0\) 0+0=0

    普通に展開しただけですが、係数のNoを見ると、すべての合計が指数の値に一致しており、
    \(a_t b_{x-t}\)の関係になっていますね。

    このイメージで畳み込み積分に入りましょう。

    サイコロ2つ振って出た目の和とその確率の問題

    さて、高1レベルの問題です。

    1~6まで出るサイコロでどの面も等確率で出る。2つのサイコロを同時に1回振って出た目の和とその確率を求めよ。

    確率の計算をすればOKですよね。1つ目のサイコロの出る目をX,2つ目のサイコロの出る目をYとしすると求めたい確率の式はどうなりますか?

    P(Z=X+Y) = P(X)×P(Y) ですよね! これは簡単! で、式を書き直すと

    P(Z) = P(X)×P(Z-X) で、確率は和を求めるので、
    ∑P(Z) = ∑P(X)×P(Z-X)
    とすると、

    X,Z―Xとなっているし、∑や∫に変えると、畳み込み積分の式になります。

    いきなり大学数学として畳み込み積分から入らず
    高校数学レベルから入ってイメージするとわかりやすいです。

    では、畳み込み積分やっていきますね。

    ➂畳み込み積分(一様分布、離散系の場合)

    確率分布は、

    ●一様分布
    ●正規分布
    ●ガンマ分布

    自作の分布

    などたくさんありますが、ここでは、一番基本的な「一様分布どうしの畳み込み積分」を解説します。ここが分かったら、確率分布関数をいろいろ変えていけば応用できます。

    先のサイコロの出る目について、離散系連続系の両方を計算して結果を比較してみましょう。

    例題

    1~6まで出るサイコロでどの面も等確率で出る。2つのサイコロを同時に1回振って出た目の和とその確率を求めよ。

    一方、連続系の一様分布の場合は、例題の文章を変えます。

    一様分布
    \(f(x) = \frac{1}{6} \) (0 ≤ x ≤ 6) それ以外0
    \(g(y) = \frac{1}{6} \) (0 ≤ y ≤ 6) それ以外0
    において、x+y=zにおける確率分布関数h(z)を作れ。

    随分文章が違いますが、内容は一緒です。要は、
    サイコロの目は1,2,3,4,5,6で等確率1/6であるが、
    関数は0~6までの区間はすべて1/6という違いだけです。

    解法1(離散系の場合)

    目の和Zは2~12まで出ますよね。それぞれの確率を計算すればOKです。下表にまとめます。

    X+Y=Z 2 3 4 5 6 7 8 9 10 11 12
    確率 1/36 2/36 3/36 4/36 5/36 6/36 5/36 4/36 3/36 2/36 1/36

    グラフで見ると、直線が尖った感じになります。

    畳み込み積分1-1

    ➃畳み込み積分(一様分布、連続系の場合)

    例題の文章を再掲します。

    一様分布
    \(f(x) = \frac{1}{6} \) (0 ≤ x ≤ 6) それ以外0
    \(g(y) = \frac{1}{6} \) (0 ≤ y ≤ 6) それ以外0
    において、x+y=zにおける確率分布関数h(z)を作れ。

    慌てないで!! 絶対解ける解法があります。ご安心ください

    1. 畳み込み積分の式を作る
    2. 積分区間を確認(ここが一番難しい)
    3. 積分区間の場合分けに合わせて丁寧に計算

    連続関数で畳み込み積分する場合はすべて上の3つの流れで解いていきます。

    1.畳み込み積分の式を作る

    定義どおり書きます。

    \( h(z)= \displaystyle \int_{-\infty}^{\infty} f(x)g(z-x)dx \)

    2.積分区間を確認(ここが一番難しい)

    x,yの制約条件は 0 ≤ x ≤ 6, 0 ≤ y ≤6です。

    領域を図示します。

    畳み込み積分1-2

    その領域内で z=x+yを考えます。

    z=x+yをy=-x+zとして、xy平面で傾き-1,y切片zの直線を考える

    畳み込み積分1-3

    y=-x+zが積分領域内にどう入るかによって場合分けを網羅する!

    すると、下図のように4パターン積分区間が変わります。

    畳み込み積分1-4

    ●①は(x,y)=(6,6)より上(つまり12 ≤ z)で、積分領域外なので、h(z)=0
    ●➁は(x,y)=(0,6)以上①以下(つまり6 ≤ z ≤12)なので、図のように、x=z-6~6区間で積分
    ●➂は(x,y)=(0,0)以上①以下(つまり0 ≤ z ≤6)なので、図のように、x=0~z区間で積分
    ●➃は(x,y)=(0,0)以下(つまりz ≤ 0)で、積分領域外なので、h(z)=0

    という4つの場合分けをして、畳み込み積分をします。

    難しそうに見えますが、この場合分けも高校数学、領域のところで学ぶ内容です。

    x,yの積分領域に制限があると、畳み込み積分は場合分けして積分しないといけない面倒臭さがあります。

    3.積分区間の場合分けに合わせて丁寧に計算

    ①12 ≤zのとき

    積分領域外なので、h(z)=0

    ➁6 ≤ z ≤12のとき

    \( h(z)= \displaystyle \int_{-\infty}^{\infty} f(x)g(z-x)dx \)
    =\(\displaystyle \int_{z-6 }^{6} \frac{1}{6} \frac{1}{6}dx \)
    =\(\frac{1}{36} \left[ x \right]_{z-6}^6\)
    =\(\frac{1}{36}(12-z)\)

    ➂0 ≤ z ≤6のとき

    \( h(z)= \displaystyle \int_{-\infty}^{\infty} f(x)g(z-x)dx \)
    =\(\displaystyle \int_{0}^{z} \frac{1}{6} \frac{1}{6}dx \)
    =\(\frac{1}{36} \left[ x \right]_0^z\)
    =\(\frac{1}{36} z\)

    ①z ≤0のとき

    積分領域外なので、h(z)=0

    まとめると下図になります。

    畳み込み積分1-5a

    ➂の離散系と結果を比較しましょう。

    畳み込み積分1-6a

    雰囲気はよく似ていますよね。離散系と連続系との比較をすると理解度が高まります!

    いろいろな関数を使って畳み込み積分を見て慣れていきましょう!

    本記事の内容は、ほぼ高校数学で解けましたね!

    まとめ

    「畳み込み積分がよくわかる(一様分布どうし)」を解説しました。

    • ①畳み込み積分とは
    • ➁身近な畳み込み積分の事例
    • ➂畳み込み積分(一様分布、離散系の場合)
    • ➃畳み込み積分(一様分布、連続系の場合)

error: Content is protected !!