カテゴリー: 手法

  • 畳み込み積分がよくわかる(一様分布どうし)

    畳み込み積分がよくわかる(一様分布どうし)

    「畳み込み積分が、わからない、解けない?」と困っていませんか?

    こういう疑問に答えます。

    本記事のテーマ

    畳み込み積分がよくわかる(一様分布どうし)
    • ①畳み込み積分とは
    • ➁身近な畳み込み積分の事例
    • ➂畳み込み積分(一様分布、離散系の場合)
    • ➃畳み込み積分(一様分布、連続系の場合)
    [themoneytizer id=”105233-2″]

    QCに必要な数学問題集をを販売します!

    QC検定®1級合格したい方、QCに必要な数学をしっかり学びたい方におススメです。
    QC検定®1級、2級、統計検定2級以上の数学スキルを磨くのに苦戦していませんか? 広大すぎる統計学、微分積分からQC・統計に勝てるための60題に厳選した問題集を紹介します。是非ご購入いただき、勉強してスキルを高めましょう。

    ①畳み込み積分とは

    まず、「畳み込み」でつまづく。。。

    「畳み込み」って何ですか?
    わかりません。。。
    畳を込む、積分?
    寝ようか?。。。 となっちゃう!

    なので、まず定義でつまづきます。さらに、言葉の定義と計算式の定義とリンクしないので、思考停止状態になります。

    「畳み込み」より目的が大事です。

    分布関数を足すために大事な計算!

    自分で分布関数を作ったり、信頼性工学などに出て来るガンマ分布のように、
    いくつかの分布関数を足し合わせていくプロセスが必要になります。

    「畳み込み」より「関数を合体させてい」くイメージです。

    畳み込み積分の定義

    実際の式はこれですね。

    \( h(x)= \displaystyle \int_{-\infty}^{\infty} f(t)g(x-t)dt \)

    ここで、わかりにくいのが、

    \(f(t)のtとg(x-t)で (t)+(x-t)=x\)の関係

    \((t)+(x-t)=x\)の関係性を抽象的に説明すると、理解できないので、身の回りの事例を紹介します!

    高校数学で、すでに畳み込み積分的なものがあります!

    ➁身近な畳み込み積分の事例

    2つ紹介します! 意外な2つです!

    展開式の項

    さて、問題です。次の式を展開して各係数を求めましょう。高1レベルです。

    \((a_3 x^3+ a_2 x^2+ a_1 x^1+ a_0)(b_2 x^2+ b_1 x^1+ b_0)\)

    普通に展開すればOKなので、係数表を作ります。

    指数 係数 係数のNoの和
    \(x^5\) \(a_3 b_2\) 3+2=5
    \(x^4\) \(a_3 b_1+a_2 b_2\) 3+1=4,2+2=4
    \(x^3\) \(a_3 b_0+a_2 b_1 + a_1 b_2\) 3+0=3,2+1=3,1+2=3
    \(x^2\) \(a_2 b_0+a_1 b_1\) 2+0=2,1+1=2
    \(x^1\) \(a_1 b_0+a_0 b_1\) 1+0=1,0+1=1
    定数 \(a_0 b_0\) 0+0=0

    普通に展開しただけですが、係数のNoを見ると、すべての合計が指数の値に一致しており、
    \(a_t b_{x-t}\)の関係になっていますね。

    このイメージで畳み込み積分に入りましょう。

    サイコロ2つ振って出た目の和とその確率の問題

    さて、高1レベルの問題です。

    1~6まで出るサイコロでどの面も等確率で出る。2つのサイコロを同時に1回振って出た目の和とその確率を求めよ。

    確率の計算をすればOKですよね。1つ目のサイコロの出る目をX,2つ目のサイコロの出る目をYとしすると求めたい確率の式はどうなりますか?

    P(Z=X+Y) = P(X)×P(Y) ですよね! これは簡単! で、式を書き直すと

    P(Z) = P(X)×P(Z-X) で、確率は和を求めるので、
    ∑P(Z) = ∑P(X)×P(Z-X)
    とすると、

    X,Z―Xとなっているし、∑や∫に変えると、畳み込み積分の式になります。

    いきなり大学数学として畳み込み積分から入らず
    高校数学レベルから入ってイメージするとわかりやすいです。

    では、畳み込み積分やっていきますね。

    ➂畳み込み積分(一様分布、離散系の場合)

    確率分布は、

    ●一様分布
    ●正規分布
    ●ガンマ分布

    自作の分布

    などたくさんありますが、ここでは、一番基本的な「一様分布どうしの畳み込み積分」を解説します。ここが分かったら、確率分布関数をいろいろ変えていけば応用できます。

    先のサイコロの出る目について、離散系連続系の両方を計算して結果を比較してみましょう。

    例題

    1~6まで出るサイコロでどの面も等確率で出る。2つのサイコロを同時に1回振って出た目の和とその確率を求めよ。

    一方、連続系の一様分布の場合は、例題の文章を変えます。

    一様分布
    \(f(x) = \frac{1}{6} \) (0 ≤ x ≤ 6) それ以外0
    \(g(y) = \frac{1}{6} \) (0 ≤ y ≤ 6) それ以外0
    において、x+y=zにおける確率分布関数h(z)を作れ。

    随分文章が違いますが、内容は一緒です。要は、
    サイコロの目は1,2,3,4,5,6で等確率1/6であるが、
    関数は0~6までの区間はすべて1/6という違いだけです。

    解法1(離散系の場合)

    目の和Zは2~12まで出ますよね。それぞれの確率を計算すればOKです。下表にまとめます。

    X+Y=Z 2 3 4 5 6 7 8 9 10 11 12
    確率 1/36 2/36 3/36 4/36 5/36 6/36 5/36 4/36 3/36 2/36 1/36

    グラフで見ると、直線が尖った感じになります。

    畳み込み積分1-1

    ➃畳み込み積分(一様分布、連続系の場合)

    例題の文章を再掲します。

    一様分布
    \(f(x) = \frac{1}{6} \) (0 ≤ x ≤ 6) それ以外0
    \(g(y) = \frac{1}{6} \) (0 ≤ y ≤ 6) それ以外0
    において、x+y=zにおける確率分布関数h(z)を作れ。

    慌てないで!! 絶対解ける解法があります。ご安心ください

    1. 畳み込み積分の式を作る
    2. 積分区間を確認(ここが一番難しい)
    3. 積分区間の場合分けに合わせて丁寧に計算

    連続関数で畳み込み積分する場合はすべて上の3つの流れで解いていきます。

    1.畳み込み積分の式を作る

    定義どおり書きます。

    \( h(z)= \displaystyle \int_{-\infty}^{\infty} f(x)g(z-x)dx \)

    2.積分区間を確認(ここが一番難しい)

    x,yの制約条件は 0 ≤ x ≤ 6, 0 ≤ y ≤6です。

    領域を図示します。

    畳み込み積分1-2

    その領域内で z=x+yを考えます。

    z=x+yをy=-x+zとして、xy平面で傾き-1,y切片zの直線を考える

    畳み込み積分1-3

    y=-x+zが積分領域内にどう入るかによって場合分けを網羅する!

    すると、下図のように4パターン積分区間が変わります。

    畳み込み積分1-4

    ●①は(x,y)=(6,6)より上(つまり12 ≤ z)で、積分領域外なので、h(z)=0
    ●➁は(x,y)=(0,6)以上①以下(つまり6 ≤ z ≤12)なので、図のように、x=z-6~6区間で積分
    ●➂は(x,y)=(0,0)以上①以下(つまり0 ≤ z ≤6)なので、図のように、x=0~z区間で積分
    ●➃は(x,y)=(0,0)以下(つまりz ≤ 0)で、積分領域外なので、h(z)=0

    という4つの場合分けをして、畳み込み積分をします。

    難しそうに見えますが、この場合分けも高校数学、領域のところで学ぶ内容です。

    x,yの積分領域に制限があると、畳み込み積分は場合分けして積分しないといけない面倒臭さがあります。

    3.積分区間の場合分けに合わせて丁寧に計算

    ①12 ≤zのとき

    積分領域外なので、h(z)=0

    ➁6 ≤ z ≤12のとき

    \( h(z)= \displaystyle \int_{-\infty}^{\infty} f(x)g(z-x)dx \)
    =\(\displaystyle \int_{z-6 }^{6} \frac{1}{6} \frac{1}{6}dx \)
    =\(\frac{1}{36} \left[ x \right]_{z-6}^6\)
    =\(\frac{1}{36}(12-z)\)

    ➂0 ≤ z ≤6のとき

    \( h(z)= \displaystyle \int_{-\infty}^{\infty} f(x)g(z-x)dx \)
    =\(\displaystyle \int_{0}^{z} \frac{1}{6} \frac{1}{6}dx \)
    =\(\frac{1}{36} \left[ x \right]_0^z\)
    =\(\frac{1}{36} z\)

    ①z ≤0のとき

    積分領域外なので、h(z)=0

    まとめると下図になります。

    畳み込み積分1-5a

    ➂の離散系と結果を比較しましょう。

    畳み込み積分1-6a

    雰囲気はよく似ていますよね。離散系と連続系との比較をすると理解度が高まります!

    いろいろな関数を使って畳み込み積分を見て慣れていきましょう!

    本記事の内容は、ほぼ高校数学で解けましたね!

    まとめ

    「畳み込み積分がよくわかる(一様分布どうし)」を解説しました。

    • ①畳み込み積分とは
    • ➁身近な畳み込み積分の事例
    • ➂畳み込み積分(一様分布、離散系の場合)
    • ➃畳み込み積分(一様分布、連続系の場合)

  • 【必読】全分散の公式の導出がわかる

    【必読】全分散の公式の導出がわかる

    「全分散の公式の導出がわからない」、と困っていませんか?

    こういう疑問に答えます。

    本記事のテーマ

    【必読】全分散の公式の導出がわかる
    • ①【共通】2段サンプリングの分散公式を導出するために知っておくべき内容
    • ➁事前に読んでおくべき関連記事
    • ➂E[E[Y|X]]=E[Y]の導出
    • ➃全分散の導出

QC・統計に勝てるためのサンプリング問題集を販売します!

QC検定®1級、2級でサンプリングの問題で苦戦していませんか?本記事では、QC・統計に勝てるためのサンプリング問題集(20題)を紹介します。

2変数の確率分布関数にまず、慣れましょう!
期待値、分散の導出から数列・積分も慣れましょう!

サンプリングの分散公式への道ですが、徐々に難しくなっていきます。1つずつ理解してクリアーしましょう。

条件付き期待値・条件付き分散の公式導出はよく教科書にあるけど、具体的な問題は意外と解けないし、例題を使った解説書が少ない。

本記事でばっちりおさえましょう。

[themoneytizer id=”105233-2″]

①【共通】2段サンプリングの分散公式を導出するために知っておくべき内容

2段サンプリングの分散の式

「2段サンプリングの分散」の式があります。

E(\(\bar{\bar{x}}\))=μ
V(\(\bar{\bar{x}}\))=\(\frac{M-m}{M-1}・\frac{σ_b^2}{m}\)+\(\frac{N-n}{N-1}・\frac{σ_w^2}{mn}\)
・\(m\):1次サンプルの大きさ
・\(n\):2次サンプルの大きさ
・\(σ_b^2\):1次単位間の特性xの分散
・\(σ_w^2\):1次単位内の特性xの分散
・M:1次単位の総数
・N:1次単位の大きさ
・\(\frac{M-m}{M-1},\frac{N-n}{N-1}\):有限修正項
となりますよね。

でも、

この式は何なの?
何でこんな難しい式なの?
覚えられない。。。

と困ってしまいますよね。QCプラネッツも苦労しました。

そこで、

せめて、「2段サンプリングの分散」の式を導出したい!

という思いで、解説していきます。

2段サンプリングの分散の式に必要な内容

まとめると、以下を理解しておく必要があります。

  1. 条件付き確率
  2. 2変数の確率分布関数(同時確率質量関数)
  3. 同時確率分布の分散、共分散の導出
  4. 条件付き確率の期待値・分散
  5. 全分散の公式の導出
  6. 2段サンプリングの分散の公式導出
1つの式なのにこんなに勉強が必要なの?

残念ながら、「Yes」です。

だから、「2段サンプリングの分散」の式を暗記して代入する問題だけ出ます。

公式暗記・代入だけでは意味不明!

だから、サンプリングの分散はみんな苦手なのです!

2段サンプリングの分散の式の丁寧な導出はQCプラネッツだけ

「だから、教科書やサイトに、2段サンプリングの分散の式を導出する内容が書いているはず」と懇願しても、残念、ありませんでした。

2段サンプリングの分散の式の丁寧な導出はQCプラネッツだけ

では、1つ1つ解説します。

本記事のテーマ(再掲)

第4弾として「条件付き確率の期待値・分散」を解説します。

  1. 条件付き確率
  2. 2変数の確率分布関数(同時確率質量関数)
  3. 同時確率分布の分散、共分散の導出
  4. 条件付き確率の期待値・分散
  5. 全分散の公式の導出
  6. 2段サンプリングの分散の公式導出

●2変数の同時確率質量関数については、関連記事で解説しています。ご確認ください。

2変数の確率分布関数(同時確率質量関数)がわかる
2変数の確率分布関数(同時確率質量関数)が説明できますか?本記事では、2変数の確率分布関数の基礎をわかりやすく解説します。サンプリングの分散、全分散の公式導出に必須です。

➁事前に読んでおくべき関連記事

●いきなり、全分散の公式を理解しようとすると、挫折します。そこで、具体事例の計算過程を一回読んでから、公式導出するとかなり身近な式になります。

関連記事でおさえておくべきポイント

  1. E(Y|X)はどんな式か? 和または積分対象はX,Yどちらか?
  2. E(E(Y|X))の計算過程。 和または積分対象はX,Yのどちらか?
  3. E(Y2|X)に慣れておく
  4. V(Y|X)はどんな式か? 和または積分対象はX,Yどちらか?
  5. E(V(Y|X)]の計算過程。 和または積分対象はX,Yのどちらか?
  6. V(E(Y|X)]の計算過程。 和または積分対象はX,Yのどちらか?
  7. 全分散の公式が成り立つ計算過程

全分散の公式を含めて、条件つき期待値、条件つき分散を網羅して解説しています。

離散型(数列)で解く場合(本記事も数列版で全分散の公式を導出します。)

【必読】条件つき期待値・条件付き分散がわかる(離散型)
条件付き期待値、条件付き分散を計算できますか?本記事では2段サンプリングの分散公式に必須な 条件付き期待値、条件付き分散、 全分散の公式を実例を使って、数列で計算して確認します。教科書では公式導出ばかりです。具体的な計算が 苦手な人は必読です。

連続型(積分)で解く場合

【必読】条件つき期待値・条件つき分散がわかる(連続型)
条件付き期待値、条件付き分散を計算できますか?本記事では2段サンプリングの分散公式に必須な 条件付き期待値、条件付き分散、全分散の公式を実例を使って,積分で計算して確認します。教科書では公式導出ばかりです。具体的な計算が 苦手な人は必読です。

では、一般化して公式導出に入ります。

➂E[E[Y|X]]=E[Y]の導出

導出

文字式でさっと書いていきます。

E(E(Y|X=xi))
=\(\sum_{i} (E(Y|X=x_i))f_{xi}\)
=\(\sum_{i}(\sum_{j} y_j f_{Y|X}(y_i|x_i)) f_{xi}\)

ここで、\(y_j\)を前に出して、fを整理します。
=\(\sum_{j} y_j(\sum_{i} f_{Y|X}(y_i|x_i) f_{xi})\)
=\(\sum_{j} y_j(\sum_{i} f(x_i,y_j)\)
=\(\sum_{j} y_j f_Y(y_j)\)
=E(Y)
となります。

ここで、1つわかりにくいポイントがあります。
\(\sum_{i} f(x_i,y_j)\) ⇒ \( f_Y(y_j)\)
になぜ変わるのか?
です。

式だけではわかりにくいので、上の関連記事の事例を使って、具体的な数字を使って計算します。

実例で詳細に解説

結果的に、
(\sum_{i} f(x_i,y_j)\) ⇒ \( f_Y(y_j)\)
が一致します。文字で解くと難しい場合は、具体例で理解しておくとよいです。

関連記事の例題から具体的な値で比較しましょう。
E(E(Y|X))の値は下表のようにまとめる事ができます。

x/y
y1

\(f_{xi,y1}\)

y2

\(f_{xi,y2}\)

y3

\(f_{xi,y3}\)

\(f_{xi}\)

x1 [1 ×\(\frac{1}{2}\) +2 ×\(\frac{1}{4}\) +3 ×\(\frac{1}{4}\)] ×\(\frac{1}{2}\) =\(\frac{7}{8}\)
x2 [1 ×\(\frac{1}{4}\) +2 ×\(\frac{1}{4}\) +3 ×\(\frac{1}{2}\)] ×\(\frac{1}{2}\) =\(\frac{7}{9}\)
計 E[Y]= 2

上の表の⑧は
⑧=[①×➁+➂×➃+⑤×⑥]×⑦
で計算して、
E[E[Y|X]]=E[Y]
を計算してます。

なお、E[Y]の求め方は、下表通りです。

x/y
y1

\(f_y(y1)\)

y2

\(f_{y}(y2)\)

y3

\(f_y(y3)\)

x1 [1 ×\(\frac{3}{8}\) +2 ×\(\frac{2}{8}\) +3 ×\(\frac{3}{8}\)] =2

上の2つの表を比較すると、

x/y
\(f_{xi,y1}\)

\(f_{xi,y2}\)

\(f_{xi,y3}\)
x1 \(\frac{1}{2}\) \(\frac{1}{4}\) \(\frac{1}{4}\)
x2 \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{2}\)
x/y
\(f_y(y1)\)

\(f_{y}(y2)\)

\(f_y(y3)\)
x1 \(\frac{3}{8}\) \(\frac{2}{8}\) \(\frac{3}{8}\)

確かに、
\(\sum_{i} f(x_i,y_j)\) ⇒ \( f_Y(y_j)\)
が一致します。文字で解くと難しい場合は、具体例で理解しておくとよいです。

ここまで細かく解説するのは、QCプラネッツだけですね。

➃全分散の導出

V(Y|X)の導出

機械的に、
V(Y)=E(Y2)-E(Y) 2
ですから、

V(Y|X) =E(Y2|X)-E(Y|X) 2
です。

E(V(Y|X),V(E(Y|X))の導出

●V(Y|X)の期待値E(V(Y|X)ですが、
E(V(Y|X)
=E(E(Y2|X)-E(Y|X) 2)
= E(E(Y2|X))-E(E(Y|X) 2)

ここで、E(E(Y|X))=E(Y)ですから、
E(Y|X)⇒E(Y2|X)と見ると、

E(E(Y2|X))=E(Y2)です。あら、不思議!

よって、
E(V(Y|X)= E(Y2)- E(E(Y|X) 2) …(式1)

●次に、E(Y|X)の分散V(E(Y|X)) ですが、
V(E(Y|X))
=E(E(Y|X) 2)-(E(E(Y|X)))2

ここで、E(E(Y|X))=E(Y)ですから、

よって、
V(E(Y|X))=E(E(Y|X) 2)-(E(Y))2…(式2)

全分散の導出

(式1)+(式2)より、下の色部分がキャンセルされます。
E(V(Y|X))= E(Y2)-E(E(Y|X) 2) …(式1)
V(E(Y|X))= E(E(Y|X) 2)-(E(Y))2…(式2)

よって、
E(V(Y|X))+ V(E(Y|X))= E(Y2)–(E(Y))2=V(Y)
が成り立ちます。

全分散の公式
V(Y)= E(V(Y|X))+ V(E(Y|X))

が導出できました。

まとめ

全分散の公式の導出をわかりやすく解説しました。

  • ①【共通】2段サンプリングの分散公式を導出するために知っておくべき内容
  • ➁事前に読んでおくべき関連記事
  • ➂E[E[Y|X]]=E[Y]の導出
  • ➃全分散の導出

  • 【必読】条件つき期待値・条件付き分散がわかる(離散型)

    【必読】条件つき期待値・条件付き分散がわかる(離散型)

    「条件付き期待値・条件付き分散の計算ができない」、と困っていませんか?

    こういう疑問に答えます。

    本記事のテーマ

    条件付き期待値・条件付き分散がわかる(離散型)
    • ①【共通】2段サンプリングの分散公式を導出するために知っておくべき内容
    • ➁例題と条件付き確率
    • ➂条件付き期待値
    • ➃条件付き分散がわかる

    QC・統計に勝てるためのサンプリング問題集を販売します!

    QC検定®1級、2級でサンプリングの問題で苦戦していませんか?本記事では、QC・統計に勝てるためのサンプリング問題集(20題)を紹介します。

    2変数の確率分布関数にまず、慣れましょう!
    期待値、分散の導出から数列・積分も慣れましょう!

    サンプリングの分散公式への道ですが、徐々に難しくなっていきます。1つずつ理解してクリアーしましょう。

    条件付き期待値・条件付き分散の公式導出はよく教科書にあるけど、具体的な問題は意外と解けないし、例題を使った解説書が少ない。

    本記事でばっちりおさえましょう。

    [themoneytizer id=”105233-2″]

    ①【共通】2段サンプリングの分散公式を導出するために知っておくべき内容

    2段サンプリングの分散の式

    「2段サンプリングの分散」の式があります。

    E(\(\bar{\bar{x}}\))=μ
    V(\(\bar{\bar{x}}\))=\(\frac{M-m}{M-1}・\frac{σ_b^2}{m}\)+\(\frac{N-n}{N-1}・\frac{σ_w^2}{mn}\)
    ・\(m\):1次サンプルの大きさ
    ・\(n\):2次サンプルの大きさ
    ・\(σ_b^2\):1次単位間の特性xの分散
    ・\(σ_w^2\):1次単位内の特性xの分散
    ・M:1次単位の総数
    ・N:1次単位の大きさ
    ・\(\frac{M-m}{M-1},\frac{N-n}{N-1}\):有限修正項
    となりますよね。

    でも、

    この式は何なの?
    何でこんな難しい式なの?
    覚えられない。。。

    と困ってしまいますよね。QCプラネッツも苦労しました。

    そこで、

    せめて、「2段サンプリングの分散」の式を導出したい!

    という思いで、解説していきます。

    2段サンプリングの分散の式に必要な内容

    まとめると、以下を理解しておく必要があります。

    1. 条件付き確率
    2. 2変数の確率分布関数(同時確率質量関数)
    3. 同時確率分布の分散、共分散の導出
    4. 条件付き確率の期待値・分散
    5. 全分散の公式の導出
    6. 2段サンプリングの分散の公式導出
    1つの式なのにこんなに勉強が必要なの?

    残念ながら、「Yes」です。

    だから、「2段サンプリングの分散」の式を暗記して代入する問題だけ出ます。

    公式暗記・代入だけでは意味不明!

    だから、サンプリングの分散はみんな苦手なのです!

    2段サンプリングの分散の式の丁寧な導出はQCプラネッツだけ

    「だから、教科書やサイトに、2段サンプリングの分散の式を導出する内容が書いているはず」と懇願しても、残念、ありませんでした。

    2段サンプリングの分散の式の丁寧な導出はQCプラネッツだけ

    では、1つ1つ解説します。

    本記事のテーマ(再掲)

    第4弾として「条件付き確率の期待値・分散」を解説します。

    1. 条件付き確率
    2. 2変数の確率分布関数(同時確率質量関数)
    3. 同時確率分布の分散、共分散の導出
    4. 条件付き確率の期待値・分散
    5. 全分散の公式の導出
    6. 2段サンプリングの分散の公式導出

    ●2変数の同時確率質量関数については、関連記事で解説しています。ご確認ください。

    2変数の確率分布関数(同時確率質量関数)がわかる
    2変数の確率分布関数(同時確率質量関数)が説明できますか?本記事では、2変数の確率分布関数の基礎をわかりやすく解説します。サンプリングの分散、全分散の公式導出に必須です。

    ➁例題と条件付き確率

    例題

    関連記事と同じ例題で解説します。関連記事もご確認ください。

    同時確率分布の分散、共分散の導出がわかる(その1 離散系の場合)
    2変数の確率分布関数(同時確率質量関数)の期待値・分散が簡単に求められますか? 本記事では、2変数の確率分布関数(離散系)の期待値・分散をわかりやすく解説します。 期待値・分散の計算が結構難しいので、復習がとても大事です。また、サンプリングの分散、全分散の公式導出に必須です。

    ●2次元の確率変数(X,Y)が、下表のような分布を持っている。

    X/Y 1 2 3
    1 \(\frac{2}{8}\) \(\frac{1}{8}\) \(\frac{1}{8}\) \(\frac{1}{2}\)
    2 \(\frac{1}{8}\) \(\frac{1}{8}\) \(\frac{2}{8}\) \(\frac{1}{2}\)
    \(\frac{3}{8}\) \(\frac{2}{8}\) \(\frac{3}{8}\) 1

    (1)条件付き確率\(f_{Y|X}(y|x)\)を求めよ。
    (2)条件付き期待値E(Y|X)、E(Y2|X)、E(Y)を求め、重要公式E(Y)=E(E(Y|X))が成り立つことを確認せよ。
    (3)条件付き分散V[Y|X]を求め、全分散の公式が成り立つことを確認せよ。

    期待値と分散のフルセットを計算してみましょう。

    条件付き確率

    (1)条件付き確率\(f_{Y|X}(y|x)\)を求めよ。

    条件付き確率

    まず、確率の式を書いてから、関数の式に変えましょう。

    ●P(A|B)=\(\frac{P(A∩B)}{P(B)}\)ですから、例えば、
    P(Y=1|X=1)=(2/8)/(1/2)=1/4です。同様に全部計算すると、次の表になります。機械的に計算しましょう。

    P(Y|X) Y=1 Y=2 Y=3
    P(Y|X=1) \(\frac{1}{2}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{2}\)
    P(Y|X=2) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{2}{2}\) \(\frac{1}{1}\)

    ➂条件付き期待値

    「(2)条件付き期待値E(Y|X)、E(Y2|X)、E(Y)を求め、重要公式E(Y)=E(E(Y|X))が成り立つことを確認せよ。」を確認します。

    条件付き期待値の計算

    E(Y|X)、E(Y2|X)を計算します。

    ●E(Y|X=i)=\( \sum_{j} y_j P(Y|X=i)\)で計算します。yで加算しますが、個々のXの値について期待値を計算します。

    ●E(Y|X=1)= \( \sum_{j} y_j P(Y|X=1)\)
    =\(1×\frac{\frac{2}{8}}{\frac{1}{2}}\)+\(2×\frac{\frac{1}{8}}{\frac{1}{2}}\)+\(3×\frac{\frac{1}{8}}{\frac{1}{2}}\)
    =\(\frac{7}{4}\)

    ●E(Y|X=2)= \( \sum_{j} y_j P(Y|X=2)\)
    =\(1×\frac{\frac{1}{8}}{\frac{1}{2}}\)+\(2×\frac{\frac{1}{8}}{\frac{1}{2}}\)+\(3×\frac{\frac{2}{8}}{\frac{1}{2}}\)
    =\(\frac{9}{4}\)

    つぎに、E(Y2|X)ですが、
    E(Y|X=i)=\( \sum_{j} y_j P(Y|X=i\))から
    E(Y|X=i)=\( \sum_{j} y_j^2 P(Y|X=i)\)に変えて加算します。

    ●E(Y2|X=1)= \( \sum_{j} y_j^2 P(Y|X=1)\)
    =\(1^2×\frac{\frac{2}{8}}{\frac{1}{2}}\)+\(2^2×\frac{\frac{1}{8}}{\frac{1}{2}}\)+\(3^2×\frac{\frac{1}{8}}{\frac{1}{2}}\)
    =\(\frac{15}{4}\)

    ●E(Y 2|X=2)= \( \sum_{j} y_j^2 P(Y|X=2)\)
    =\(1^2×\frac{\frac{1}{8}}{\frac{1}{2}}\)+\(2^2×\frac{\frac{1}{8}}{\frac{1}{2}}\)+\(3^2×\frac{\frac{2}{8}}{\frac{1}{2}}\)
    =\(\frac{23}{4}\)

    条件付きの期待値の特徴

    上のE(Y|X), E(Y2|X)を計算すると、奇妙な感じになります。なぜなら、

    E(Y|X=i)、E(Y2|X=i)と
    X=iの個々の値が出るから

    これは、実は問題ありません。
    連続系の問いでE(Y|X), E(Y2|X)を計算すると、E(Y|X), E(Y2|X)そのものの値ではなく、
    関数になります。

    重要公式E(Y)=E(E(Y|X))の確認

    ●E(Y)=E(E(Y|X))を確認します。この式の証明は別途、他の記事で解説します。本記事では、計算が合うことや計算過程を確認します。

    ●ここで、E(Y)については、関連記事ですでに計算しています。ご確認ください。

    同時確率分布の分散、共分散の導出がわかる(その1 離散系の場合)
    2変数の確率分布関数(同時確率質量関数)の期待値・分散が簡単に求められますか? 本記事では、2変数の確率分布関数(離散系)の期待値・分散をわかりやすく解説します。 期待値・分散の計算が結構難しいので、復習がとても大事です。また、サンプリングの分散、全分散の公式導出に必須です。

    ●E(Y)自体は非常に簡単で、
    E(Y)=1×\(\frac{3}{8}\)+2×\(\frac{2}{8}\)+3×\(\frac{3}{8}\)=2
    でした。

    では、重要公式E(Y)=E(E(Y|X))の確認をしましょう。

    E(E(Y|X))が難しいですが、E(*) の中「*」を意識して、
    E(*)=∑ (*) f(★) で計算すればよいです。

    E(E(Y|X))=\(\sum_{i=1}^{2} E(Y|X) f_Y(y_i)\)
    =\(\frac{7}{4}・\frac{1}{2}+\frac{9}{4}・\frac{1}{2}\)
    =2
    と一致しましたね。

    ➃条件付き分散がわかる

    「(3)条件付き分散V[Y|X]を求め、全分散の公式が成り立つことを確認せよ。」を確認します。

    条件付き分散の計算

    V(Y|X)、E(V(Y|X))、V(E(Y|X))を計算していきます。

    ●V(Y|X)ですが、焦らず、分散公式を思い出します。
    V[X]=E[X2]-E[X]2
    でしたね。X⇒Y|Xに変えればOKです。でも、これでも代入しにくいので解いてみましょう。

    V(Y|X=i)= E[Y2|X=i]-E[Y|X=i]2
    です。X2⇒Y2|Xに注意します。
    実は、
    E[Y2|X=i]とE[Y|X=i]は計算済です。

    V(Y|X=1)= E[Y2|X=1]-E[Y|X=1]2
    =\(\frac{15}{4}-(\frac{7}{4})^2\)
    =\(\frac{11}{16}\)

    V(Y|X=2)= E[Y2|X=2]-E[Y|X=2]2
    =\(\frac{23}{4}-(\frac{9}{4})^2\)
    =\(\frac{11}{16}\)

    ●次に全分散の公式への下ごしらえをします。

    ●E(V(Y|X))を計算します。V(Y|X)の期待値なんて、どうやって計算するか、難しそうです。しっかり見ていきます。Y|XはX=iごとに計算していきます。
    E(V(Y|X=i)) = \(\sum_{i} V(Y|X=i) f_X(x=i)\)
    =\(\frac{11}{16}・\frac{1}{2}+\frac{11}{16}・\frac{1}{2}\)
    =\(\frac{11}{16}\)

    ●V(E(Y|X))を計算します。E(Y|X)の分散なんて、どうやって計算するか、難しそうです。しっかり見ていきます。xの関数なのでxで積分します。
    V(E(Y|X))=E(E(Y|X)2)-E(E(Y|X)) 2
    =\(\sum_{i} E(Y|X)^2 f_X(x=i)\)- \((\sum_{i} E(Y|X) f_X(x=i))^2\)
    =[\((\frac{7}{4})^2・\frac{1}{2}+(\frac{9}{4})^2・\frac{1}{2}\)]
    -\([\frac{7}{4})・\frac{1}{2}+\frac{9}{4}・\frac{1}{2}]^2\)
    =\(\frac{1}{16}\)

    となります。随分計算が大変でした。

    全分散の公式の確認

    2段サンプリングの分散導出に必須な全分散の公式

    V(Y)= V(E(Y|X))+ E(V(Y|X))
    を確認しましょう。

    関連記事と同じ例題で解説します。関連記事もご確認ください。

    同時確率分布の分散、共分散の導出がわかる(その1 離散系の場合)
    2変数の確率分布関数(同時確率質量関数)の期待値・分散が簡単に求められますか? 本記事では、2変数の確率分布関数(離散系)の期待値・分散をわかりやすく解説します。 期待値・分散の計算が結構難しいので、復習がとても大事です。また、サンプリングの分散、全分散の公式導出に必須です。

    ●全分散の公式の(右辺)を合算します。
    V(E(Y|X))+ E(V(Y|X))
    =\(\frac{11}{16}+\frac{1}{16}\)
    =\(\frac{3}{4}\)
    =V(Y)
    と一致します。

    ●証明は別途、他の記事で解説しますが、連続型で全分散の公式が成り立つことを確認しました。

    重い例題でしたが、ちゃんと計算できました。教科書では、抽象的な公式導出ばかり書いていますが、実例で計算するのは意外と難しいので、何度も確認しましょう。

    まとめ

    条件付き期待値・条件付き分散がわかる(離散型)をわかりやすく解説しました。

    • ①【共通】2段サンプリングの分散公式を導出するために知っておくべき内容
    • ➁例題と条件付き確率
    • ➂条件付き期待値
    • ➃条件付き分散がわかる

  • 【必読】条件つき期待値・条件つき分散がわかる(連続型)

    【必読】条件つき期待値・条件つき分散がわかる(連続型)

    「条件付き期待値・条件付き分散の計算ができない」、と困っていませんか?

    こういう疑問に答えます。

    本記事のテーマ

    条件付き期待値・条件付き分散がわかる(連続型)
    • ①【共通】2段サンプリングの分散公式を導出するために知っておくべき内容
    • ➁例題と条件付き確率
    • ➂条件付き期待値
    • ➃条件付き分散がわかる

    QC・統計に勝てるためのサンプリング問題集を販売します!

    QC検定®1級、2級でサンプリングの問題で苦戦していませんか?本記事では、QC・統計に勝てるためのサンプリング問題集(20題)を紹介します。

    2変数の確率分布関数にまず、慣れましょう!
    期待値、分散の導出から数列・積分も慣れましょう!

    サンプリングの分散公式への道ですが、徐々に難しくなっていきます。1つずつ理解してクリアーしましょう。

    条件付き期待値・条件付き分散の公式導出はよく教科書にあるけど、具体的な問題は意外と解けないし、例題を使った解説書が少ない。

    本記事でばっちりおさえましょう。

    [themoneytizer id=”105233-2″]

    ①【共通】2段サンプリングの分散公式を導出するために知っておくべき内容

    2段サンプリングの分散の式

    「2段サンプリングの分散」の式があります。

    E(\(\bar{\bar{x}}\))=μ
    V(\(\bar{\bar{x}}\))=\(\frac{M-m}{M-1}・\frac{σ_b^2}{m}\)+\(\frac{N-n}{N-1}・\frac{σ_w^2}{mn}\)
    ・\(m\):1次サンプルの大きさ
    ・\(n\):2次サンプルの大きさ
    ・\(σ_b^2\):1次単位間の特性xの分散
    ・\(σ_w^2\):1次単位内の特性xの分散
    ・M:1次単位の総数
    ・N:1次単位の大きさ
    ・\(\frac{M-m}{M-1},\frac{N-n}{N-1}\):有限修正項
    となりますよね。

    でも、

    この式は何なの?
    何でこんな難しい式なの?
    覚えられない。。。

    と困ってしまいますよね。QCプラネッツも苦労しました。

    そこで、

    せめて、「2段サンプリングの分散」の式を導出したい!

    という思いで、解説していきます。

    2段サンプリングの分散の式に必要な内容

    まとめると、以下を理解しておく必要があります。

    1. 条件付き確率
    2. 2変数の確率分布関数(同時確率質量関数)
    3. 同時確率分布の分散、共分散の導出
    4. 条件付き確率の期待値・分散
    5. 全分散の公式の導出
    6. 2段サンプリングの分散の公式導出
    1つの式なのにこんなに勉強が必要なの?

    残念ながら、「Yes」です。

    だから、「2段サンプリングの分散」の式を暗記して代入する問題だけ出ます。

    公式暗記・代入だけでは意味不明!

    だから、サンプリングの分散はみんな苦手なのです!

    2段サンプリングの分散の式の丁寧な導出はQCプラネッツだけ

    「だから、教科書やサイトに、2段サンプリングの分散の式を導出する内容が書いているはず」と懇願しても、残念、ありませんでした。

    2段サンプリングの分散の式の丁寧な導出はQCプラネッツだけ

    では、1つ1つ解説します。

    本記事のテーマ(再掲)

    第4弾として「条件付き確率の期待値・分散」を解説します。

    1. 条件付き確率
    2. 2変数の確率分布関数(同時確率質量関数)
    3. 同時確率分布の分散、共分散の導出
    4. 条件付き確率の期待値・分散
    5. 全分散の公式の導出
    6. 2段サンプリングの分散の公式導出

    ●2変数の同時確率質量関数については、関連記事で解説しています。ご確認ください。

    2変数の確率分布関数(同時確率質量関数)がわかる
    2変数の確率分布関数(同時確率質量関数)が説明できますか?本記事では、2変数の確率分布関数の基礎をわかりやすく解説します。サンプリングの分散、全分散の公式導出に必須です。

    ➁例題と条件付き確率

    例題

    2次元の確率変数(X,Y)の同時確率密度関数が
    \(f(x,y)=\frac{1}{4}(x+2y)\) (0 ≤ \(x\) ≤ 2, 0 ≤ \(y\) ≤ 1)
    \(f_X(x)\)=\(\frac{1}{4}(x+1)\)
    \(f_Y(y)\)=\(\frac{1}{2}(1+2y)\)
    で表されている。
    (1)条件付き確率\(f_{Y|X}(y|x)\)を求めよ。
    (2)条件付き期待値E(Y|X)、E(Y2|X)、E(Y)を求め、重要公式E(Y)=E(E(Y|X))が成り立つことを確認せよ。
    (3)条件付き分散V[Y|X]を求め、全分散の公式が成り立つことを確認せよ。

    全盛りです。1つずつ解いていきましょう。大丈夫です。

    条件付き確率

    (1)条件付き確率\(f_{Y|X}(y|x)\)を求めよ。

    条件付き確率

    まず、確率の式を書いてから、関数の式に変えましょう。

    ●P(A|B)=\(\frac{P(A∩B)}{P(B)}\)ですから
    \(f_{Y|X}(y|x)\)= \(\frac{f(x,y)}{f_X(x)}\)となります。代入すると
    \(f_{Y|X}(y|x)\)= \(\frac{f(x,y)}{f_X(x)}\)=\(\frac{x+2y}{x+1}\)

    なお、逆に\(f_{X|Y}(x|y)\)なら、
    \(f_{X|Y}(x|y)\)= \(\frac{f(x,y)}{f_Y(y)}\)=\(\frac{x+2y}{2(1+2y)}\)
    となります。機械的に代入すればOKですね。

    ➂条件付き期待値

    「(2)条件付き期待値E(Y|X)、E(Y2|X)、E(Y)を求め、重要公式E(Y)=E(E(Y|X))が成り立つことを確認せよ。」を確認します。

    条件付き期待値の計算

    E(Y|X)、E(Y2|X)を計算します。

    ●E(Y|X)=\(\int_0^1 y f_{Y|X}(y|x)dy\)で計算します。yで積分します。

    ●E(Y|X)=\(\int_0^1 y f_{Y|X}(y|x)dy\)
    =\(\int_0^1 y \frac{x+2y}{x+1} dy\)
    =\(\frac{1}{x+1}\left[ \frac{x}{2} y^2 +\frac{2}{3} y^3 \right]_0^1\)
    =\(\frac{1}{x+1} (\frac{x}{2}+\frac{2}{3})\)
    =\(\frac{3x+4}{6(x+1)}\)

    つぎに、E(Y2|X)ですが、
    \(\int_0^1 y f_{Y|X}(y|x)dy\)から
    \(\int_0^1 y^2 f_{Y|X}(y|x)dy\)に変えて積分します。

    ●E(Y2|X)= \(\int_0^1 y^2 f_{Y|X}(y|x)dy\)
    =\(\int_0^1 y^2 \frac{x+2y}{x+1} dy\)
    =\(\frac{1}{x+1}\left[ \frac{x}{3} y^3 +\frac{1}{2} y^4 \right]_0^1\)
    =\(\frac{1}{x+1} (\frac{x}{3}+\frac{1}{2})\)
    =\(\frac{2x+3}{6(x+1)}\)

    条件付きの期待値の特徴

    上のE(Y|X), E(Y2|X)を計算すると、奇妙な感じになります。なぜなら、

    値ではなく、関数の式で出て来るから

    これは、実は問題ありません。
    離散系の問いでE(Y|X), E(Y2|X)を計算すると、E(Y|X), E(Y2|X)そのものの値ではなく、
    E(Y|X=i) (i=1,…,n)についてそれぞれ個別に値を求める
    E(Y2|X=i) (i=1,…,n)についてそれぞれ個別に値を求める
    ことになります。連続型の場合は関数で表現することに相当します。

    重要公式E(Y)=E(E(Y|X))の確認

    ●E(Y)=E(E(Y|X))を確認します。この式の証明は別途、他の記事で解説します。本記事では、計算が合うことや計算過程を確認します。

    ●ここで、E(Y)については、関連記事ですでに計算しています。ご確認ください。

    同時確率分布の分散、共分散の導出がわかる(その2 連続系の場合)
    2変数の確率分布関数(同時確率質量関数)の期待値・分散が簡単に求められますか? 本記事では、2変数の確率分布関数(連続系)の期待値・分散をわかりやすく解説します。 期待値・分散の計算が結構難しいので、復習がとても大事です。 また、サンプリングの分散、全分散の公式導出に必須です。

    ●E(Y)= \(\int_0^1 y f_Y(y)dy\)
    =\(\frac{1}{2}\int_0^1 y (1+2y) dy\)
    =\(\frac{1}{2}\left[ \frac{1}{2} y^2 +\frac{2}{3} y^3 \right]_0^1\)
    =\(\frac{7}{12}\)
    でした。

    では、重要公式E(Y)=E(E(Y|X))の確認をしましょう。

    E(E(Y|X))が難しいですが、E(*) の中「*」を意識して、
    E(*)=∫ (*) f(★) で計算すればよいです。

    なお、E(*) の中「*」はE(Y|X)= \(\frac{3x+4}{6(x+1)}\) とxの式なので、f(★)の★はxで考えます。

    E(E(Y|X))= \(\int_0^2 E(Y|X) f_X(x)dx\)
    =\(\int_0^2 \frac{3x+4}{6(x+1)} \frac{1}{4}(x+1) dx\)
    =\(\frac{1}{24} \int_0^2 (3x+4) dx \)
    =\(\frac{1}{24}\left[ \frac{3}{2} x^2 + 4x \right]_0^2\)
    =\(\frac{1}{24} 14\)
    =\(\frac{7}{12}\)
    =E(Y)
    と一致しましたね。

    ➃条件付き分散がわかる

    「(3)条件付き分散V[Y|X]を求め、全分散の公式が成り立つことを確認せよ。」を確認します。

    条件付き分散の計算

    V(Y|X)、E(V(Y|X))、V(E(Y|X))を計算していきます。

    ●V(Y|X)ですが、焦らず、分散公式を思い出します。
    V[X]=E[X2]-E[X]2
    でしたね。X⇒Y|Xに変えればOKです。でも、これでも代入しにくいので解いてみましょう。

    V(Y|X)= E[Y2|X]-E[Y|X]2
    です。X2⇒Y2|Xに注意します。
    実は、
    E[Y2|X]= \(\frac{2x+3}{6(x+1)}\)
    E[Y|X]= \(\frac{3x+4}{6(x+1)}\)
    とすでに計算済ですから、そのまま計算できます。よって
    V[Y|X]= \(\frac{2x+3}{6(x+1)}\)- \((\frac{3x+4}{6(x+1)})^2\)
    =\(\frac{6(x+1)(2x+3)-(3x+4)^2}{36(x+1)^2}\)
    =\(\frac{1}{36(x+1)^2} (3x^2+6x+2)\)
    とxの関数として出て来ました。

    ●次に全分散の公式への下ごしらえをします。

    ●E(V(Y|X))を計算します。V(Y|X)の期待値なんて、どうやって計算するか、難しそうです。しっかり見ていきます。xの関数なのでxで積分します。
    E(V(Y|X))= \(\int_0^2 V(Y|X) f_X(x)dx\)
    =\(\int_0^2 \frac{1}{36(x+1)^2} (3x^2+6x+2) \frac{1}{4}(x+1) dx\)
    =\(\frac{1}{144} \int_0^2 \frac{3x^2+6x+2}{x+1} dx \)
    =\(\frac{1}{144} \int_0^2 (3(x+1)-\frac{1}{x+1}) dx \)
    積分すると
    =\(\frac{1}{144}\left[ \frac{3}{2}(x+1)^2 -log|x+1| \right]_0^2\)
    =\(\frac{1}{144} (12-log3)\)
    となります。計算が合っているか、ちょっと心配になりますね。大丈夫です。どんどん突き進みましょう。

    ●V(E(Y|X))を計算します。E(Y|X)の分散なんて、どうやって計算するか、難しそうです。しっかり見ていきます。xの関数なのでxで積分します。
    V(E(Y|X))=E(E(Y|X)2)-E(E(Y|X)) 2
    =\(\int_0^2 \frac{(3x+4)^2}{36(x+1)^2} \frac{1}{4} (x+1)dx\)
    -\((\int_0^2 \frac{3x+4}{6(x+1)} \frac{1}{4} (x+1)dx)^2\)
    =\(\frac{1}{144 }\int_0^2 \frac{(3x+4)^2}{x+1} dx\) -\((\frac{1}{24} \int_0^2 (3x+4) dx)^2\)

    =\(\frac{1}{144}\int_0^2 (9(x+1)+6+\frac{1}{x+1}dx\) -\(\frac{1}{576}(\left[ \frac{3}{2}x^2 +4x \right]_0^2\)
    =\(\frac{1}{144}(36+12+log3 \) -\(\frac{196}{576}\)
    =\(\frac{1}{144}(-1+log3) \)
    となります。随分計算が大変でした。

    全分散の公式の確認

    2段サンプリングの分散導出に必須な全分散の公式

    V(Y)= V(E(Y|X))+ E(V(Y|X))
    を確認しましょう。

    ●V(Y)は関連記事ですでに計算済です。

    同時確率分布の分散、共分散の導出がわかる(その2 連続系の場合)
    2変数の確率分布関数(同時確率質量関数)の期待値・分散が簡単に求められますか? 本記事では、2変数の確率分布関数(連続系)の期待値・分散をわかりやすく解説します。 期待値・分散の計算が結構難しいので、復習がとても大事です。 また、サンプリングの分散、全分散の公式導出に必須です。

    V(Y)=\(\frac{11}{144}\)ですね。

    ●全分散の公式の(右辺)を合算します。
    V(E(Y|X))+ E(V(Y|X))
    =\(\frac{1}{144}(-1+log3) \)+\(\frac{1}{144} (12-log3)\)
    =\(\frac{11}{144}\)
    =V(Y)
    と一致します。

    ●証明は別途、他の記事で解説しますが、連続型で全分散の公式が成り立つことを確認しました。

    重い例題でしたが、ちゃんと計算できました。教科書では、抽象的な公式導出ばかり書いていますが、実例で計算するのは意外と難しいので、何度も確認しましょう。

    まとめ

    条件付き期待値・条件付き分散がわかる(連続型)をわかりやすく解説しました。

    • ①【共通】2段サンプリングの分散公式を導出するために知っておくべき内容
    • ➁例題と条件付き確率
    • ➂条件付き期待値
    • ➃条件付き分散がわかる

  • 同時確率分布の分散、共分散の導出がわかる(その2 連続系の場合)

    同時確率分布の分散、共分散の導出がわかる(その2 連続系の場合)

    「同時確率分布の分散、共分散の導出がわからない」、と困っていませんか?

    こういう疑問に答えます。

    本記事のテーマ

    同時確率分布の分散、共分散の導出がわかる
    • ①【共通】2段サンプリングの分散公式を導出するために知っておくべき内容
    • ➁【何度も復習しよう!】離散型確率分布の場合(その1で解説)
    • ➂【何度も復習しよう!】連続型確率分布の場合

    QC・統計に勝てるためのサンプリング問題集を販売します!

    QC検定®1級、2級でサンプリングの問題で苦戦していませんか?本記事では、QC・統計に勝てるためのサンプリング問題集(20題)を紹介します。

    2変数の確率分布関数にまず、慣れましょう!
    期待値、分散の導出から数列・積分も慣れましょう!

    サンプリングの分散公式への道ですが、徐々に難しくなっていきます。1つずつ理解してクリアーしましょう。

    [themoneytizer id=”105233-2″]

    ①【共通】2段サンプリングの分散公式を導出するために知っておくべき内容

    2段サンプリングの分散の式

    「2段サンプリングの分散」の式があります。

    E(\(\bar{\bar{x}}\))=μ
    V(\(\bar{\bar{x}}\))=\(\frac{M-m}{M-1}・\frac{σ_b^2}{m}\)+\(\frac{N-n}{N-1}・\frac{σ_w^2}{mn}\)
    ・\(m\):1次サンプルの大きさ
    ・\(n\):2次サンプルの大きさ
    ・\(σ_b^2\):1次単位間の特性xの分散
    ・\(σ_w^2\):1次単位内の特性xの分散
    ・M:1次単位の総数
    ・N:1次単位の大きさ
    ・\(\frac{M-m}{M-1},\frac{N-n}{N-1}\):有限修正項
    となりますよね。

    でも、

    この式は何なの?
    何でこんな難しい式なの?
    覚えられない。。。

    と困ってしまいますよね。QCプラネッツも苦労しました。

    そこで、

    せめて、「2段サンプリングの分散」の式を導出したい!

    という思いで、解説していきます。

    2段サンプリングの分散の式に必要な内容

    まとめると、以下を理解しておく必要があります。

    1. 条件付き確率
    2. 2変数の確率分布関数(同時確率質量関数)
    3. 同時確率分布の分散、共分散の導出
    4. 条件付き確率の期待値・分散
    5. 全分散の公式の導出
    6. 2段サンプリングの分散の公式導出
    1つの式なのにこんなに勉強が必要なの?

    残念ながら、「Yes」です。

    だから、「2段サンプリングの分散」の式を暗記して代入する問題だけ出ます。

    公式暗記・代入だけでは意味不明!

    だから、サンプリングの分散はみんな苦手なのです!

    2段サンプリングの分散の式の丁寧な導出はQCプラネッツだけ

    「だから、教科書やサイトに、2段サンプリングの分散の式を導出する内容が書いているはず」と懇願しても、残念、ありませんでした。

    2段サンプリングの分散の式の丁寧な導出はQCプラネッツだけ

    では、1つ1つ解説します。

    本記事のテーマ(再掲)

    第3弾として「同時確率分布の分散、共分散の導出」を解説します。

    1. 条件付き確率
    2. 2変数の確率分布関数(同時確率質量関数)
    3. 同時確率分布の分散、共分散の導出
    4. 条件付き確率の期待値・分散
    5. 全分散の公式の導出
    6. 2段サンプリングの分散の公式導出

    ●2変数の同時確率質量関数については、関連記事で解説しています。ご確認ください。

    2変数の確率分布関数(同時確率質量関数)がわかる
    2変数の確率分布関数(同時確率質量関数)が説明できますか?本記事では、2変数の確率分布関数の基礎をわかりやすく解説します。サンプリングの分散、全分散の公式導出に必須です。

    ➁【何度も復習しよう!】離散型確率分布の場合(その1で解説)

    ●まず、わかりやすい「離散型」の場合で、数列∑を使った計算を解説します。関連記事で確認ください。

    同時確率分布の分散、共分散の導出がわかる(その1 離散系の場合)
    2変数の確率分布関数(同時確率質量関数)の期待値・分散が簡単に求められますか? 本記事では、2変数の確率分布関数(離散系)の期待値・分散をわかりやすく解説します。 期待値・分散の計算が結構難しいので、復習がとても大事です。また、サンプリングの分散、全分散の公式導出に必須です。

    本記事は、(その1)より難し目なので、まず(その1)を読んでから、本記事を読み進めてください。

    ➂【何度も復習しよう!】連続型確率分布の場合

    ●「連続型」の場合で、積分を使った計算を解説します。

    例題

    2次元の確率変数(X,Y)の同時確率密度関数が
    \(f(x,y)=\frac{1}{4}(x+2y)\) (0 ≤ \(x\) ≤ 2, 0 ≤ \(y\) ≤ 1)
    で表されている。
    (1)X,Yの周辺確率密度関数\(f_X(x)\), \(f_Y(y)\)を求めよ。
    (2)期待値E[X]、E[Y]、E[X+Y]、E[XY]を求めよ。
    (3)分散V[X]、V[Y]、共分散Cov[X,Y]を求めよ。

    (1)は関連記事で解説済なので、そちらで確認しましょう。

    2変数の確率分布関数(同時確率質量関数)がわかる
    2変数の確率分布関数(同時確率質量関数)が説明できますか?本記事では、2変数の確率分布関数の基礎をわかりやすく解説します。サンプリングの分散、全分散の公式導出に必須です。

    本記事は、(2)(3)を解説します。

    解法に必要な公式集

    連続系の場合の期待値と分散の解法に慣れるために必要な公式集をまとめます。以下の式を使って、解いていきます。なお、離散系の場合は∫を∑に変えればOKです。

    期待値の公式

    ●E[X]=\(\int_0^2 xf_X(x)dx\)
    ●E[Y]=\(\int_0^1 yf_Y(y)dy\)

    ●E[X+Y]=E[X]+E[Y]
    または、
    ●E[X+Y]=\(\int_0^2 \int_0^1 (x+y)f(x,y)dydx\)

    ●E[XY]=\(\int_0^2 \int_0^1 xyf(x,y)dydx\)
    (E[XY]とE[X]E[Y]が一致しない場合もあるので注意!)

    分散の公式

    ●E[X2]=\(\int_0^2 x^2 f_X(x)dx\)
    ●E[Y2]=\(\int_0^1 y^2 f_Y(y)dy\)

    ●V[X]=E[X2]-E[X]2
    ●V[Y]=E[Y2]-E[Y]2

    ●Cov[X,Y]= E[XY]- E[X]E[Y]

    解法(期待値)

    (2)期待値E[X]、E[Y]、E[X+Y]、E[XY]を求めよ。

    では、解いていきましょう。

    E[X]の解法

    \(\begin{eqnarray}
    \int_0^2 xf_X(x) dx \\
    &= \frac{1}{4} \int_0^2 x(x+1) dx \\
    &= \frac{1}{4} \left[ \frac{x^3}{3}+\frac{x^2}{2} \right]_0^2 dx\\
    \end{eqnarray}\)
    =\(\frac{7}{6}\)
    となります。

    E[Y]の解法

    \(\begin{eqnarray}
    \int_0^1 yf_Y(y) dy \\
    &= \frac{1}{2} \int_0^1 y(1+2y) dy \\
    &= \frac{1}{2} \left[ \frac{y^2}{2}+\frac{2y^3}{3} \right]_0^1 dy\\
    \end{eqnarray}\)
    =\(\frac{7}{12}\)
    となります。

    E[X+Y]の解法

    E[X+Y]=E[X]+E[Y]=\(\frac{7}{4}\)

    この解法でもいいですが、せっかくなので積分からでも算出しましょう。

    \(\begin{eqnarray}
    \int_0^2 \int_0^1 (x+y)f(x,y)dydx \\
    &= \frac{1}{4} \int_0^2 \int_0^1 (x+y)(x+2y)dydx \\
    \end{eqnarray}\)
    =\(\frac{7}{4}\)
    となります。
    (途中経過は計算してみてください)

    積分の計算の詳細はここをご覧ください。

    E[XY]の解法

    \(\begin{eqnarray}
    \int_0^2 \int_0^1 xyf(x,y)dydx \\
    &= \frac{1}{4} \int_0^2 \int_0^1 xy(x+2y)dydx \\
    \end{eqnarray}\)
    =\(\frac{2}{3}\)
    となります。
    (途中経過は計算してみてください)

    積分の計算の詳細はここをご覧ください。

    期待値をまとめると、
    E[X]=7/6、E[Y]=7/12、E[X+Y]=7/4、E[XY]=2/3
    となります。

    また、
    E[X+Y]= E[X]+ E[Y] は成り立ちますが、
    E[XY]= E[X] E[Y] は成り立ちません。
    X,Yは互いに独立ではないからですね。

    解法(分散)

    (3)分散V[X]、V[Y]、共分散Cov[X,Y]を求めよ。

    V[X]の解法

    ●ここで、分散V[X]の式をおさえましょう。
    まず、E[X2]が必要です。

    \(\begin{eqnarray}
    \int_0^2 x^2 f_X(x) dx \\
    &= \frac{1}{4} \int_0^2 x^2 (x+1) dx \\
    &= \frac{1}{4} \left[ \frac{x^4}{4}+\frac{x^3}{3} \right]_0^2 dx\\
    \end{eqnarray}\)
    =\(\frac{5}{3}\)
    となります。

    よって、
    V[X]=E[X2]-E[X]2
    =\(\frac{5}{3}\)-\((\frac{7}{6})^2\)
    =11/36

    V[Y]の解法

    ●ここで、分散V[Y]の式をおさえましょう。
    まず、E[Y2]が必要です。

    \(\begin{eqnarray}
    \int_0^1 y^2 f_Y(y) dy \\
    &= \frac{1}{2} \int_0^1 y^2 (1+2y) dy \\
    &= \frac{1}{2} \left[ \frac{y^3}{3}+\frac{y^4}{2} \right]_0^1 dy\\
    \end{eqnarray}\)
    =\(\frac{5}{12}\)
    となります。

    よって、
    V[Y]=E[Y2]-E[Y]2
    =\(\frac{5}{12}\)-\((\frac{7}{12})^2\)
    =11/144

    共分散COV[X,Y]の解法

    ●ここで、共分散COV[X,Y]の式をおさえましょう。
    COV[X,Y]=E[XY]-E[X]E[Y]
    =\(\frac{2}{3}\)-\(\frac{7}{6}\)・\(\frac{7}{12}\)
    =\(\frac{-1}{72}\)

    ちょっと難しいですが、解き方は1パターンなので、何度も復習しましょう。

    積分の計算の詳細はここをご覧ください。

    分散をまとめると、
    V[X]=11/36、V[Y]=11/144、Cov[X,Y]=-1/72
    となります。

    連続系は、ひたすら積分すればOKです。

    まとめ

    同時確率分布の分散、共分散の導出をわかりやすく解説しました。

    • ①【共通】2段サンプリングの分散公式を導出するために知っておくべき内容
    • ➁【何度も復習しよう!】離散型確率分布の場合(その1で解説)
    • ➂【何度も復習しよう!】連続型確率分布の場合

  • 同時確率分布の分散、共分散の導出がわかる(その1 離散系の場合)

    同時確率分布の分散、共分散の導出がわかる(その1 離散系の場合)

    「同時確率分布の分散、共分散の導出がわからない」、と困っていませんか?

    こういう疑問に答えます。

    本記事のテーマ

    同時確率分布の分散、共分散の導出がわかる
    • ①【共通】2段サンプリングの分散公式を導出するために知っておくべき内容
    • ➁【何度も復習しよう!】離散型確率分布の場合
    • ➂【何度も復習しよう!】連続型確率分布の場合(その2で解説)

    QC・統計に勝てるためのサンプリング問題集を販売します!

    QC検定®1級、2級でサンプリングの問題で苦戦していませんか?本記事では、QC・統計に勝てるためのサンプリング問題集(20題)を紹介します。

    2変数の確率分布関数にまず、慣れましょう!
    期待値、分散の導出から数列・積分も慣れましょう!

    サンプリングの分散公式への道ですが、徐々に難しくなっていきます。1つずつ理解してクリアーしましょう。

    [themoneytizer id=”105233-2″]

    ①【共通】2段サンプリングの分散公式を導出するために知っておくべき内容

    2段サンプリングの分散の式

    「2段サンプリングの分散」の式があります。

    E(\(\bar{\bar{x}}\))=μ
    V(\(\bar{\bar{x}}\))=\(\frac{M-m}{M-1}・\frac{σ_b^2}{m}\)+\(\frac{N-n}{N-1}・\frac{σ_w^2}{mn}\)
    ・\(m\):1次サンプルの大きさ
    ・\(n\):2次サンプルの大きさ
    ・\(σ_b^2\):1次単位間の特性xの分散
    ・\(σ_w^2\):1次単位内の特性xの分散
    ・M:1次単位の総数
    ・N:1次単位の大きさ
    ・\(\frac{M-m}{M-1},\frac{N-n}{N-1}\):有限修正項
    となりますよね。

    でも、

    この式は何なの?
    何でこんな難しい式なの?
    覚えられない。。。

    と困ってしまいますよね。QCプラネッツも苦労しました。

    そこで、

    せめて、「2段サンプリングの分散」の式を導出したい!

    という思いで、解説していきます。

    2段サンプリングの分散の式に必要な内容

    まとめると、以下を理解しておく必要があります。

    1. 条件付き確率
    2. 2変数の確率分布関数(同時確率質量関数)
    3. 同時確率分布の分散、共分散の導出
    4. 条件付き確率の期待値・分散
    5. 全分散の公式の導出
    6. 2段サンプリングの分散の公式導出
    1つの式なのにこんなに勉強が必要なの?

    残念ながら、「Yes」です。

    だから、「2段サンプリングの分散」の式を暗記して代入する問題だけ出ます。

    公式暗記・代入だけでは意味不明!

    だから、サンプリングの分散はみんな苦手なのです!

    2段サンプリングの分散の式の丁寧な導出はQCプラネッツだけ

    「だから、教科書やサイトに、2段サンプリングの分散の式を導出する内容が書いているはず」と懇願しても、残念、ありませんでした。

    2段サンプリングの分散の式の丁寧な導出はQCプラネッツだけ

    では、1つ1つ解説します。

    本記事のテーマ(再掲)

    第3弾として「同時確率分布の分散、共分散の導出」を解説します。

    1. 条件付き確率
    2. 2変数の確率分布関数(同時確率質量関数)
    3. 同時確率分布の分散、共分散の導出
    4. 条件付き確率の期待値・分散
    5. 全分散の公式の導出
    6. 2段サンプリングの分散の公式導出

    ●2変数の同時確率質量関数については、関連記事で解説しています。ご確認ください。

    2変数の確率分布関数(同時確率質量関数)がわかる
    2変数の確率分布関数(同時確率質量関数)が説明できますか?本記事では、2変数の確率分布関数の基礎をわかりやすく解説します。サンプリングの分散、全分散の公式導出に必須です。

    ➁【何度も復習しよう!】離散型確率分布の場合

    ●まず、わかりやすい「離散型」の場合で、数列∑を使った計算を解説します。

    例題

    ●2次元の確率変数(X,Y)が、下表のような分布を持っている。

    X/Y 1 2 3
    1 \(\frac{2}{8}\) \(\frac{1}{8}\) \(\frac{1}{8}\) \(\frac{1}{2}\)
    2 \(\frac{1}{8}\) \(\frac{1}{8}\) \(\frac{2}{8}\) \(\frac{1}{2}\)
    \(\frac{3}{8}\) \(\frac{2}{8}\) \(\frac{3}{8}\) 1

    (1)期待値E[X],E[Y],E[X+Y],E[XY]を求めよ。
    (2)分散V[X],V[Y],共分散COV[X,Y]を求めよ。

    期待値と分散のフルセットを計算してみましょう。

    解法に必要な公式集

    離散系の場合の期待値と分散の解法に慣れるために必要な公式集をまとめます。以下の式を使って、解いていきます。なお、連続系の場合は∑を∫に変えればOKです。

    期待値の公式

    ●E[X]=∑X・Pr(X)
    ●E[Y]=∑X・Pr(Y)
    ●E[X+Y]=∑(X+Y)・Pr(X+Y)
    ●E[XY]=∑XY・Pr(XY)

    分散の公式

    ●V[X]=E[\((X-μ_X)^2\)]
    ●V[Y]=E[\((Y-μ_Y)^2\)]
    ●COV[X,Y]=E[\((X-μ_X)(Y-μ_Y)\)]
    ●Cov[X,Y]= E[XY]- E[X]E[Y]

    解法(期待値)

    (1)期待値E[X],E[Y],E[X+Y],E[XY]を求めよ。

    では、解いていきましょう。

    E[X]の解法

    表から、X=1の確率が1/2、X=2の確率が1/2ですから期待値は、
    E[X]=1×1/2+2×1/2=3/2

    簡単ですね!

    E[Y]の解法

    表から、Y=1の確率が3/8、Y=2の確率が2/8、Y=3の確率が3/8ですから期待値は、
    E[Y]=1×3/8+2×2/8+3×3/8=2

    簡単ですね!

    E[X+Y]の解法

    X+Yの場合について下表を追加しましょう。

    X/Y 1 2 3
    1 X+Y=2 X+Y=3 X+Y=4
    \(\frac{2}{8}\) \(\frac{1}{8}\) \(\frac{1}{8}\)
    2 X+Y=3 X+Y=4 X+Y=5
    \(\frac{1}{8}\) \(\frac{1}{8}\) \(\frac{2}{8}\)

    表から、
    X+Y=2の確率が2/8、
    X+Y=3の確率が2/8、
    X+Y=4の確率が2/8、
    X+Y=5の確率が2/8
    ですから期待値は、
    E[X+Y]=2×2/8+3×2/8+4×2/8+5×2/8=3.5

    表を追加すれば簡単ですね!

    E[XY]の解法

    同様にXYの場合について下表を追加しましょう。

    X/Y 1 2 3
    1 XY=1 XY=2 XY=3
    \(\frac{2}{8}\) \(\frac{1}{8}\) \(\frac{1}{8}\)
    2 XY=2 XY=4 XY=6
    \(\frac{1}{8}\) \(\frac{1}{8}\) \(\frac{2}{8}\)

    表から、
    XY=1の確率が2/8、
    XY=2の確率が2/8、
    XY=3の確率が1/8、
    XY=4の確率が1/8、
    XY=6の確率が2/8
    ですから期待値は、
    E[XY]=1×2/8+2×2/8+3×1/8+4×1/8+6×2/8=25/8

    表を追加すれば簡単ですね!

    期待値をまとめると、
    E[X]=3/2、E[Y]=2、E[X+Y]=3.5、E[XY]=25/8
    となります。

    また、
    E[X+Y]= E[X]+ E[Y] は成り立ちますが、
    E[XY]= E[X] E[Y] は成り立ちません。
    X,Yは互いに独立ではないからですね。

    解法(分散)

    (2)分散V[X],V[Y],共分散COV[X,Y]を求めよ。

    V[X]の解法

    ●ここで、分散V[X]の式をおさえましょう。
    V[X]=E[\((X-μ_X)^2\)]
    ですね。

    次に、Xの平均\(μ_X\)を求めましょう。
    平均\(μ_X\)はX=1,2の平均ですから3/2ですね。

    表から、X=1の確率が1/2、X=2の確率が1/2ですから分散は、

    V[X]=E[\((X-μ_X)^2\)]=E[\((X-1.5)^2\)]
    =\((1-1.5)^2\)×1/2+\((2-1.5)^2\)×1/2
    =1/4

    ちょっと難しいですね。

    V[Y]の解法

    ●ここで、分散V[Y]の式をおさえましょう。
    V[Y]=E[\((Y-μ_Y)^2\)]
    ですね。

    次に、Yの平均\(μ_Y\)を求めましょう。
    平均\(μ_Y\)はY=1,2,3の平均ですから2ですね。

    表から、Y=1の確率が3/8、Y=2の確率が2/8、Y=3の確率が3/8ですから分散は、

    V[Y]=E[\((Y-μ_Y)^2\)]=E[\((Y-2)^2\)]
    =\((1-2)^2\)×3/8+\((2-2)^2\)×2/8+\((3-2)^2\)×3/8
    =3/4

    ちょっと難しいですね。

    共分散COV[X,Y]の解法

    ●ここで、共分散COV[X,Y]の式をおさえましょう。
    COV[X,Y]=E[\((X-μ_X)(Y-μ_Y)\)]
    ですね。

    共分散は、
    COV[X,Y]=E[\((X-μ_X)(Y-μ_Y)\)]= E[\((X-1.5)(Y-2)\)]
    =(1-1.5)(1-2)×2/8+(1-1.5)(2-2)×1/8+(1-1.5)(3-2)×1/8+
    (2-1.5)(1-2)×1/8+(2-1.5)(2-2)×1/8+(2-1.5)(3-2)×2/8
    =1/8

    なお、共分散Cov[X,Y]はもう1つ公式があり、
    Cov[X,Y]= E[XY]- E[X]E[Y]
    1/8=25/8-3/2・3
    が成り立ちます。

    ちょっと難しいですが、解き方は1パターンなので、何度も復習しましょう。

    分散をまとめると、
    V[X]=1/4、V[Y]=3/4、Cov[X,Y]=1/8
    となります。

    離散系で使った公式一覧

    ➂【何度も復習しよう!】連続型確率分布の場合

    その2の記事で解説します。

    まとめ

    同時確率分布の分散、共分散の導出をわかりやすく解説しました。

    • ①【共通】2段サンプリングの分散公式を導出するために知っておくべき内容
    • ➁【何度も復習しよう!】離散型確率分布の場合
    • ➂【何度も復習しよう!】連続型確率分布の場合(その2で解説)

  • 2変数の確率分布関数(同時確率質量関数)がわかる

    2変数の確率分布関数(同時確率質量関数)がわかる

    「2変数の確率分布関数(同時確率質量関数)がわからない」、と困っていませんか?

    こういう疑問に答えます。

    本記事のテーマ

    2変数の確率分布関数(同時確率質量関数)がわかる
    • ①【共通】2段サンプリングの分散公式を導出するために知っておくべき内容
    • ➁2変数の確率分布関数(同時確率質量関数)とは
    • ➂離散型確率分布の場合
    • ➃連続型確率分布の場合

    QC・統計に勝てるためのサンプリング問題集を販売します!

    QC検定®1級、2級でサンプリングの問題で苦戦していませんか?本記事では、QC・統計に勝てるためのサンプリング問題集(20題)を紹介します。

    2変数の確率分布関数にまず、慣れましょう!
    ➃連続型確率分布の場合が最も大事なので、最後まで読んでください。
    これを理解しないと、サンプリングの分散が理解できなくなります。
    [themoneytizer id=”105233-2″]

    ①【共通】2段サンプリングの分散公式を導出するために知っておくべき内容

    2段サンプリングの分散の式

    「2段サンプリングの分散」の式があります。

    E(\(\bar{\bar{x}}\))=μ
    V(\(\bar{\bar{x}}\))=\(\frac{M-m}{M-1}・\frac{σ_b^2}{m}\)+\(\frac{N-n}{N-1}・\frac{σ_w^2}{mn}\)
    ・\(m\):1次サンプルの大きさ
    ・\(n\):2次サンプルの大きさ
    ・\(σ_b^2\):1次単位間の特性xの分散
    ・\(σ_w^2\):1次単位内の特性xの分散
    ・M:1次単位の総数
    ・N:1次単位の大きさ
    ・\(\frac{M-m}{M-1},\frac{N-n}{N-1}\):有限修正項
    となりますよね。

    でも、

    この式は何なの?
    何でこんな難しい式なの?
    覚えられない。。。

    と困ってしまいますよね。QCプラネッツも苦労しました。

    そこで、

    せめて、「2段サンプリングの分散」の式を導出したい!

    という思いで、解説していきます。

    2段サンプリングの分散の式に必要な内容

    まとめると、以下を理解しておく必要があります。

    1. 条件付き確率
    2. 2変数の確率分布関数(同時確率質量関数)
    3. 同時確率分布の分散、共分散の導出
    4. 条件付き確率の期待値・分散
    5. 全分散の公式の導出
    6. 2段サンプリングの分散の公式導出
    1つの式なのにこんなに勉強が必要なの?

    残念ながら、「Yes」です。

    だから、「2段サンプリングの分散」の式を暗記して代入するだけの問題がよくあります。

    公式暗記・代入だけでは意味不明!

    だから、サンプリングの分散はみんな苦手なのです!

    2段サンプリングの分散の式の丁寧な導出はQCプラネッツだけ

    「だから、教科書やサイトに、2段サンプリングの分散の式を導出する内容が書いているはず」と懇願しても、残念、ありませんでした。

    2段サンプリングの分散の式の丁寧な導出はQCプラネッツだけ

    では、1つ1つ解説します。

    ➁2変数の確率分布関数(同時確率質量関数)がわかる

    第2弾として「2変数の確率分布関数」を解説します。

    1. 条件付き確率
    2. 2変数の確率分布関数(同時確率質量関数)
    3. 同時確率分布の分散、共分散の導出
    4. 条件付き確率の期待値・分散
    5. 全分散の公式の導出
    6. 2段サンプリングの分散の公式導出

    2変数の確率分布関数とは

    ●簡単にいうと、2変数(x,y)が同時に起こる確率を分布関数にしたものです。
    確率分布関数は
    \(f(x,y)\)
    で表現します。

    ●これだけなので、簡単ですね。
    徐々に複雑になっていきますが、簡単に解説していきます。

    2変数が完全に独立している場合

    なお、2変数の確率分布で、頭が混乱しがちになるのは、

    2変数が互いに独立している場合と、そうでない場合の区別がつきにくい

    です。

    ●式で書くと、
    \(f(x,y)\)=\(g(x)\)×\(h(y)\)
    と表現できます。2変数x,yは互いに独立しているので、同時確率は単純に積でよいとなります。

    ●これだけなので、簡単ですね。
    徐々に複雑になっていきますが、簡単に解説していきます。

    ●以下、例題を使って、解説しますが、よく混乱するポイントなので、読んでください。全分散の公式の導出などで、よく使う式ですが、不慣れでパニックになるところです。

    例題でおさえておくポイント

    1. 離散型の例で、2変数が互いに独立している場合を理解する
    2. 連続型の例で、X,Yそれぞれの周辺確率密度関数の求め方を理解する

    この2点をあやふやにすると、応用が利きません。。。

    ➂離散型確率分布の場合

    次の3つの例題を挙げます。2変数の確率分布の特徴に慣れましょう。

    1. 例題1(2変数が互いに独立していない例)
    2. 例題2(2変数が互いに独立してそうな例)
    3. 例題3(2変数が完全に独立している例)
    違いを理解しましょう。

    例題1(2変数が互いに独立していない例)

    2変数が互いに独立していない、交互に影響する例を下表に挙げます。これは中学数学レベルなので安心してください。

    X/Y 1 2 3
    1 \(\frac{2}{8}\) \(\frac{1}{8}\) \(\frac{1}{8}\) \(\frac{1}{2}\)
    2 \(\frac{1}{8}\) \(\frac{1}{8}\) \(\frac{2}{8}\) \(\frac{1}{2}\)
    \(\frac{3}{8}\) \(\frac{2}{8}\) \(\frac{3}{8}\) 1

    ●以下の確率を計算してみましょう。
    (1) P(X=2,Y=3)
    (2) P(X=1)
    (3) P(Y=3)
    これは簡単ですよね。ビビらないでください。

    ●答えは、表に書いていますよね。

    例題2(2変数が互いに独立してそうな例)

    例題1と同じ表ですが、値を若干変えます。

    X/Y 1 2 3
    1 \(\frac{3}{16}\) \(\frac{1}{8}\) \(\frac{3}{16}\) \(\frac{1}{2}\)
    2 \(\frac{3}{16}\) \(\frac{1}{8}\) \(\frac{3}{16}\) \(\frac{1}{2}\)
    \(\frac{3}{8}\) \(\frac{2}{8}\) \(\frac{3}{8}\) 1

    ●ここでポイントなのは、
    どのi(i=1,2),j(j=1,2,3)に対して、
    Pr(X=i,Y=j)=Pr(X=i)×Pr(Y=j)
    が成り立ちます。

    この状態は、

    2変数が互いに独立している

    と言えます。

    例題3(2変数が完全に独立している例)

    例題2は確かに完全に独立していますが、X,Yに関係する表があると、独立しているかどうかをいちいち確認する必要があります。

    本来、独立しているわけですから、下表の方が、独立していることがはっきりしてわかりやすいです。

    X 1 2
    Pr \(\frac{1}{2}\) \(\frac{1}{2}\) 1

    Y 1 2 3
    Pr \(\frac{3}{8}\) \(\frac{2}{8}\) \(\frac{3}{8}\) 1

    別表にまとめると、独立感がありますよね。これくらいX,Yを切り離して考えましょう。

    ➃連続型確率分布の場合

    積分が複雑だけど、1つずつ見れば理解できます!

    ●離散型は簡単ですが、連続型になると難しく感じます。その理由は以下です。

    1. ∑が積分に変わる
    2. Xの確率分布関数を求めるのに、Yで積分が必要なのが理解しにくい
    3. 計算結果がイメージしにくい
    4. 二重積分に不慣れで難しい

    難しくなりますが、1つずつ記事を読み進めていけば理解できます。大丈夫です!

    例題

    2次元の確率変数(X,Y)の同時確率密度関数が
    \(f(x,y)=k(x+2y)\) (0 ≤ \(x\) ≤ 2, 0 ≤ \(y\) ≤ 1)
    で表されている。
    (1) kを求めよ。
    (2)Xの周辺確率密度関数\(f_X(x)\)を求めよ。
    (3)Yの周辺確率密度関数\(f_Y(y)\)を求めよ。

    1つずつ解説します。慣れてましょう!

    解法

    ●(1)は、早速二重積分ですが、x,yについて、2回積分すればOKです。

    \(\begin{eqnarray}
    \int_0^1 \int_0^2 f(x,y)dxdy
    &= \int_0^2 \left[ xy+y^2 \right]_0^1 dx\\
    &= \int_0^2 (x+1) dx
    &= \left[ \frac{1}{2}x^2+x \right]_0^2\\
    &= 4\\
    \end{eqnarray}\)

    確率密度関数の全積分は1なので、k=\(\frac{1}{4}\)となります。

    ●(2)これがわかりにくい。Xなので、xで積分したいが、そうではなく、yで積分します。

    さっきの、離散型で考えると、Pr(X=1)を計算するときは、Pr(X=1)に相当するYの確率の和を下図のように計算しますよね。離散型は「和」で、連続型は「積分」となるイメージで理解しましょう。

    確率密度関数

    よって、

    \(\begin{eqnarray}
    \frac{1}{4} \int_0^1 (x+2y) dy
    &= \frac{1}{4} \left[ xy+y^2 \right]_0^1 dx\\
    &= \frac{1}{4} (x+1)\\
    \end{eqnarray}\)

    となります。

    ●(3)同様に、Yなので、yで積分したいが、そうではなく、xで積分します。

    さっきの、離散型で考えると、Pr(Y=0)を計算するときは、Pr(Y=0)に相当するXの確率の和を下図のように計算しますよね。離散型は「和」で、連続型は「積分」となるイメージで理解しましょう。

    確率密度関数

    よって、

    \(\begin{eqnarray}
    \frac{1}{4} \int_0^2 (x+2y) dx
    &= \frac{1}{4} \left[ \frac{1}{2}x^2+xy \right]_0^2 dx\\
    &= \frac{1}{2} (1+2y)\\
    \end{eqnarray}\)

    となります。

    ただ、困ったことに、元の確率密度関数と、X,Yの周辺確率密度関数の式を見ると、関係性がわかりません。
    ●元の確率密度関数:\(f(x,y)=\frac{1}{4}(x+2y)\)
    ●Xの周辺確率密度関数:\(f_X(x)= \frac{1}{4} (x+1)\)
    ●Yの周辺確率密度関数:\(f_Y(x)= \frac{1}{2} (1+2y)\)

    これも、理解しにくい点ですが、積分で一発で出せる良さはあります。慣れましょう!

    まとめ

    2変数の確率分布関数(同時確率質量関数)をわかりやすく解説しました。

    • ①【共通】2段サンプリングの分散公式を導出するために知っておくべき内容
    • ➁2変数の確率分布関数(同時確率質量関数)とは
    • ➂離散型確率分布の場合
    • ➃連続型確率分布の場合

  • 条件付き確率がわかる(2段サンプリングの分散式導出)

    条件付き確率がわかる(2段サンプリングの分散式導出)

    条件付き確率がわかる(2段サンプリングの分散式導出)

    「条件付き確率がわからない」、と困っていませんか?

    こういう疑問に答えます。

    本記事のテーマ

    条件付き確率がわかる
    • ①【共通】2段サンプリングの分散公式を導出するために知っておくべき内容
    • ➁条件付き確率とは
    • ➂条件付き確率の例題

    QC・統計に勝てるためのサンプリング問題集を販売します!

    QC検定®1級、2級でサンプリングの問題で苦戦していませんか?本記事では、QC・統計に勝てるためのサンプリング問題集(20題)を紹介します。

    [themoneytizer id=”105233-2″]

    ①【共通】2段サンプリングの分散公式を導出するために知っておくべき内容

    2段サンプリングの分散の式

    「2段サンプリングの分散」の式があります。

    E(\(\bar{\bar{x}}\))=μ
    V(\(\bar{\bar{x}}\))=\(\frac{M-m}{M-1}・\frac{σ_b^2}{m}\)+\(\frac{N-n}{N-1}・\frac{σ_w^2}{mn}\)
    ・\(m\):1次サンプルの大きさ
    ・\(n\):2次サンプルの大きさ
    ・\(σ_b^2\):1次単位間の特性xの分散
    ・\(σ_w^2\):1次単位内の特性xの分散
    ・M:1次単位の総数
    ・N:1次単位の大きさ
    ・\(\frac{M-m}{M-1},\frac{N-n}{N-1}\):有限修正項
    となりますよね。

    でも、

    この式は何なの?
    何でこんな難しい式なの?
    覚えられない。。。

    と困ってしまいますよね。QCプラネッツも苦労しました。

    そこで、

    せめて、「2段サンプリングの分散」の式を導出したい!

    という思いで、解説していきます。

    2段サンプリングの分散の式に必要な内容

    まとめると、以下を理解しておく必要があります。

    1. 条件付き確率
    2. 2変数の確率分布関数(同時確率質量関数)
    3. 同時確率分布の分散、共分散の導出
    4. 条件付き確率の期待値・分散
    5. 全分散の公式の導出
    6. 2段サンプリングの分散の公式導出
    1つの式なのにこんなに勉強が必要なの?

    残念ながら、「Yes」です。

    だから、「2段サンプリングの分散」の式を暗記だけして代入して終わることが多いです。

    公式暗記・代入だけでは意味不明!

    だから、サンプリングの分散はみんな苦手なのです!

    2段サンプリングの分散の式の丁寧な導出はQCプラネッツだけ

    「だから、教科書やサイトに、2段サンプリングの分散の式を導出する内容が書いているはず」と懇願しても、残念、ありませんでした。

    2段サンプリングの分散の式の丁寧な導出はQCプラネッツだけ

    では、1つ1つ解説します。

    ➁条件付き確率とは

    まず、第1弾として「条件付き確率」を解説します。条件付き確率は高校数学でも習う、「ちょっと変わった確率」です。

    1. 条件付き確率
    2. 2変数の確率分布関数(同時確率質量関数)
    3. 同時確率分布の分散、共分散の導出
    4. 条件付き確率の期待値・分散
    5. 全分散の公式の導出
    6. 2段サンプリングの分散の公式導出

    条件付き確率とは

    ●2つの事象、変数が前提です。ある事象Bが起こった条件のもとで、事象Aが起こる確率を考えるのが、「条件付き確率」ですね。

    事象Aも事象Bも同時に起こる確率は
    P(A∩B)=P(A)×P(B)
    で計算しますね。

    このANDの条件に対して、分母を
    全体1ではなく、事象Bが起こる確率と変える点が、
    「条件付き確率」の特徴です。

    条件付き確率の公式

    公式で書くと、

    ある事象Bが起こった条件のもとで、事象Aが起こる確率は
    P(A|B)=\(\frac{P(A∩B)}{P(B)}\)
    と書ける。

    条件付き確率の独立性とは?

    上に書いたとおり、
    P(A∩B)=P(A)×P(B)
    が成り立つ場合は

    P(A|B)=\(\frac{P(A∩B)}{P(B)}\)
    =\(\frac{ P(A)×P(B)}{P(B)}\)
    =P(A)
    なります。

    「ある事象Bが起こった条件のもとで、事象Aが起こる確率は、
    単に事象Aが起こる確率と同じ」です。

    って、これって、事象Aと事象Bの関わりがまったく無いじゃん!ということで、
    事象Aと事象Bは独立である
    って言います。

    論理的には、条件付き確率の独立性は有りですけど、実際は、
    AとBが互いに影響し合う場合に考える確率問題が「条件付き確率」です。

    2段サンプリングも1段目と2段目が互いに影響するので、条件付き確率の考えが必要です。

    ➂条件付き確率の例題

    実際に例題を解いてみましょう。

    袋の中にトランプが次のように12枚入っている。
    ハートの1~4の1枚ずつ計4枚
    スペードの1~8の1枚ずつ計8枚
    袋の中から1枚取り出すとき、
    (1)カードの数が3以下である確率を求めよ。
    (2)カードがスペードとわかっている時、カードの数が3以下である確率を求めよ。
    (3)カードの数が3以下であるとわかっているとき、カードがハートである確率を求めよ。

    解いてみましょう。
    ●(1)は、全12枚中、3以下のカードは6枚あるので、確率P=1/2
    これは簡単!

    (2)(3)は条件付き確率ですね。
    ●(2)は
    ・事象A:「カードの数が3以下」
    ・事象B:「スペードとわかっている時」
    ・事象A∩B:「カードがスペードで数が3以下」
    ですから、
    P(B)=8/12
    P(A∩B)=3/12
    より
    P(A|B)=\(\frac{P(A∩B)}{P(B)}\)= (3/12)/(8/12)=3/8
    です。ちょっとわかりにくいですね。条件付き確率は。

    検算方法としては、
    ・事象B:「スペードとわかっている時」⇒8枚
    ・事象A∩B:「カードがスペードで数が3以下」⇒3枚
    から3/8としてもOKですね。こっちの方が分かりやすいですね!

    ●(3)は
    ・事象A:「カードがハート」
    ・事象B:「カードの数が3以下である」
    ・事象A∩B:「カードの数が3以下で、ハート」
    ですから、
    P(B)=4/12
    P(A∩B)=3/12
    より
    P(A|B)=\(\frac{P(A∩B)}{P(B)}\)= (3/12)/(4/12)=3/4
    です。ちょっとわかりにくいですね。条件付き確率は。

    検算方法としては、
    ・事象B:「カードの数が3以下である」⇒4枚
    ・事象A∩B:「カードの数が3以下で、ハート」⇒3枚
    から3/4としてもOKですね。こっちの方が分かりやすいですね!

    条件付き確率って馴染みにくいですけど、
    P(A|B)=\(\frac{P(A∩B)}{P(B)}\)
    の式、ガンガン使っていくので、慣れましょうね!

    まとめ

    条件付き確率をわかりやすく解説しました。

    • ①【共通】2段サンプリングの分散公式を導出するために知っておくべき内容
    • ➁条件付き確率とは
    • ➂条件付き確率の例題

  • 【必読】有限母集団の修正項の導出ができる

    【必読】有限母集団の修正項の導出ができる

    「有限母集団の修正項\(\frac{N-n}{N-1}\)の導出ができない」、と困っていませんか?

    こういう疑問に答えます。

    本記事のテーマ

    【必読】有限母集団の修正項の導出ができる
    ●E[\(\bar{x}\)]=μ
    ●V(\(\bar{x}\))=\(\frac{N-n}{N-1}\)\(\frac{σ}{n}\)
    を丁寧に導出します。
    • ①有限母集団からのランダムサンプリング
    • ②有限母集団の標本平均の導出
    • ③修正項の導出に必要な数式
    • ④有限母集団の標本分散の修正項への導出

    QC・統計に勝てるためのサンプリング問題集を販売します!

    QC検定®1級、2級でサンプリングの問題で苦戦していませんか?本記事では、QC・統計に勝てるためのサンプリング問題集(20題)を紹介します。

    ①有限母集団からのランダムサンプリング

    下図のように、データ数N、平均μ、分散\(σ^2\)の有限母集団から、n個のデータをランダムサンプリングします。

    サンプリング

    n個のデータの平均ではない、標本平均の期待値E[\(\bar{x}\)]と、
    分散ではない、標本分散の期待値V(\(\bar{x}\))を導出します。

    [themoneytizer id=”105233-2″]

    ②有限母集団の標本平均の導出

    導出します。

    E[\(\bar{x}\)]=E[\(\frac{1}{n}\)\(\sum_{i=1}^{n}x_i\)]
    =\(\frac{1}{n}\)E[\(\sum_{i=1}^{n}x_i\)]
    =\(\frac{1}{n}\){E[\(x_1+x_2+…+x_n\)]}
    =\(\frac{1}{n}\){E[\(x_1\)]+ E[\(x_2\)]+…+ E[\(x_n\)]}
    =\(\frac{1}{n}\){μ+μ+…+μ}
    =\(\frac{nμ}{n}\)

    なお、すべてのiについて、
    E[\(x_i\)]=μ
    を使いました。

    ●E[\(\bar{x}\)]=μ
    と有限母集団の平均μと一致しました。

    ②修正項の導出に必要な数式

    次に標本分散V(\(\bar{x}\))を導出しますが、導出過程に必要な式があります。先に紹介して導出しておきましょう。

    【数式その1】
    \((\sum_{i=1}^{n}x_i)^2\)=\(\sum_{i=1}^{n}x_i ^2\)+\(\sum_{i=1}^{n}\sum_{j=1(i≠j)}^{n}x_i x_j\)
    同様にnをNに、xをXに変えて
    \((\sum_{i=1}^{N}X_i)^2\)=\(\sum_{i=1}^{N}X_i ^2\)+\(\sum_{i=1}^{N}\sum_{j=1(i≠j)}^{N}X_i X_j\)

    「なんじゃこりゃ!」という式ですが、展開すれば成立します。あとで導出しますね。

    【数式その2】
    \(\frac{1}{n}\)E[\(\sum_{i=1}^{n}x_i ^2\)]=\(\frac{1}{N}\)E[\(\sum_{i=1}^{N}X_i ^2\)]
    \(\frac{1}{_{n}C_2}\)E[\(\sum_{i=1}^{n}\sum_{j=1(i≠j)}^{n}x_i x_j\)]= \(\frac{1}{_{N}C_2}\)E[\(\sum_{i=1}^{N}\sum_{j=1(i≠j)}^{n}X_i X_j\)]

    【数式その1】の導出

    実際に展開しましょう。

    \((\sum_{i=1}^{n}x_i)^2\)
    =\((x_1+x_2+…+x_n)^2\)
    =(あ)

    和の2乗の展開は、
    自身の2乗と、互いの積の和ですね。これは高校1年数学レベルです。

    (あ)式は
    (あ)=(\(x_1^2+x_2^2+…+x_n^2\) (2乗和)
    +\(x_1( なし+x_2+x_3+…+x_{n-1}+x_n)\) (互いの積)
    +\(x_2(x_1+なし+x_3+…+x_{n-1}+x_n)\) (互いの積)

    +\(x_{n-1}(x_1+x_2+x_3+…+x_{n-2}+なし+x_n)\) (互いの積)
    +\(x_n (x_1+x_2+x_3+…+x_{n-2}+x_{n-1}+なし)\) (互いの積)
    =(い)

    (あ)式の「互いの積」項にある「なし」は2乗和の項に入れたため、ありません。「ない」ことを明確にするために「なし」と入れました。

    (い)式をまとめましょう。

    2乗和は簡単で
    (\(x_1^2+x_2^2+…+x_n^2\)=\(\sum_{i=1}^{n} x_i^2\)
    ですね。

    互いの積は、それぞれの組み合わせの積だけど、自分自身同士の積はないので、
    \(x_1( なし+x_2+x_3+…+x_{n-1}+x_n)\) (互いの積)
    +\(x_2(x_1+なし+x_3+…+x_{n-1}+x_n)\) (互いの積)

    +\(x_{n-1}(x_1+x_2+x_3+…+x_{n-2}+なし+x_n)\) (互いの積)
    +\(x_n (x_1+x_2+x_3+…+x_{n-2}+x_{n-1}+なし)\) (互いの積)
    =\(\sum_{i=1}^{n}\sum_{j=1(i≠j)}^{n}x_i x_j\)
    とまとめることができます。

    【数式その1】
    \((\sum_{i=1}^{n}x_i)^2\)=\(\sum_{i=1}^{n}x_i ^2\)+\(\sum_{i=1}^{n}\sum_{j=1(i≠j)}^{n}x_i x_j\)

    できましたね。

    【数式その2】の導出

    【数式その2】
    \(\frac{1}{n}\)E[\(\sum_{i=1}^{n}x_i ^2\)]=\(\frac{1}{N}\)E[\(\sum_{i=1}^{N}X_i ^2\)]

    期待値Eを使って、ズルく導出します。数式よりは論理で両辺を等号に持ち込みます。

    もともとデータ\( X_i \)も\( x_i \)も同じ集合におり、平均、分散も同じですね。だとしたら、
    期待値E[\( X_i \)]= E[\( x_i \)]と
    期待値E[\( X_i^2 \)]= E[\( x_i^2 \)]と
    してもよいですね。期待値だから、似たデータなら期待値は同じ。ちょっと強引ですか?

    あとは、個数の平均を考えればOK。よって、

    【数式その2】
    \(\frac{1}{n}\)E[\(\sum_{i=1}^{n}x_i ^2\)]=\(\frac{1}{N}\)E[\(\sum_{i=1}^{N}X_i ^2\)]

    数学的には正しいけど、ちょっと強引ですね。

    同様に、

    【数式その2】
    \(\frac{1}{_{n}C_2}\)E[\(\sum_{i=1}^{n}\sum_{j=1(i≠j)}^{n}x_i x_j\)]= \(\frac{1}{_{N}C_2}\)E[\(\sum_{i=1}^{N}\sum_{j=1(i≠j)}^{n}X_i X_j\)]

    以上、下ごしらえは終わりです。では、標本分散を導出しましょう。

    ③有限母集団の標本分散の修正項への導出

    標本分散V(\(\bar{x}\))の式

    分散の公式は、

    V(\(\bar{x}\))=E[\(\bar{x^2}\)]-E[\(\bar{x}\)]2

    E[\(\bar{x}\)]はすでに、E[\(\bar{x}\)]=μとわかっています。

    E[\(\bar{x^2}\)]を導出します。分散はいつもE[\(x^2\)]の導出が難しいですよね。

    期待値E[\(\bar{x^2}\)]の導出

    E[\(\bar{x^2}\)]=E[\((\frac{1}{n}\sum_{i=1}^{n}x_i)^2\)]
    =\(\frac{1}{n^2}\)E[\((\sum_{i=1}^{n}x_i)^2\)]
    =(ア)

    (ア)の式で、\((\sum_{i=1}^{n}x_i)^2\)は、【数式その1】そのものですね。使いましょう。

    (ア)= \(\frac{1}{n^2}\)E[\(\sum_{i=1}^{n}x_i ^2\)+\(\sum_{i=1}^{n}\sum_{j=1(i≠j)}^{n}x_i x_j\)]
    =\(\frac{1}{n^2}\)E[\(\sum_{i=1}^{n}x_i ^2\)]+\(\frac{1}{n^2}\)E[\(\sum_{i=1}^{n}\sum_{j=1(i≠j)}^{n}x_i x_j\)]
    =(イ)

    次に、【数式その2】を使って\(x_i\)から\(X_i\)の式に変換します。
    E[\(\sum_{i=1}^{n}x_i ^2\)]=\(\frac{n}{N}\)E[\(\sum_{i=1}^{N}X_i ^2\)]
    E[\(\sum_{i=1}^{n}\sum_{j=1(i≠j)}^{n}x_i x_j\)]= \(\frac{_{n}C_2}{_{N}C_2}\)E[\(\sum_{i=1}^{N}\sum_{j=1(i≠j)}^{n}X_i X_j\)]

    (イ)
    =\(\frac{1}{n^2}\)E[\(\sum_{i=1}^{n}x_i ^2\)]+\(\frac{1}{n^2}\)E[\(\sum_{i=1}^{n}\sum_{j=1(i≠j)}^{n}x_i x_j\)]
    =\(\frac{1}{n^2}\)\(\frac{n}{N}\)E[\(\sum_{i=1}^{N}X_i ^2\)]+\(\frac{1}{n^2}\)\(\frac{_{n}C_2}{_{N}C_2}\)E[\(\sum_{i=1}^{N}\sum_{j=1(i≠j)}^{n}X_i X_j\)]
    =(ウ)

    整理すると、
    (ウ)
    =\(\frac{1}{nN}\)E[\(\sum_{i=1}^{N}X_i ^2\)]+\(\frac{1}{n^2}\)\(\frac{n(n-1)}{N(N-1)}\)E[\(\sum_{i=1}^{N}\sum_{j=1(i≠j)}^{n}X_i X_j\)]
    =(エ)

    ここで、\(X_i\)は母集団のデータなので、期待値Eが外せます。つまり、
    E[\(\sum_{i=1}^{N}X_i ^2\)]=\(\sum_{i=1}^{N}X_i ^2\)
    E[\(\sum_{i=1}^{N}\sum_{j=1(i≠j)}^{n}X_i X_j\)]=\(\sum_{i=1}^{N}\sum_{j=1(i≠j)}^{n}X_i X_j\)
    です。なお、サンプリングした方の\(x_i\)は期待値Eが外せません。

    (エ)
    =\(\frac{1}{nN}\)\(\sum_{i=1}^{N}X_i^2\)+\(\frac{1}{n^2}\)\(\frac{n(n-1)}{N(N-1)}\)\(\sum_{i=1}^{N}\sum_{j=1(i≠j)}^{n}X_i X_j\)
    =(オ)

    次に、よくわからない式、\(\sum_{j=1(i≠j)}^{n}X_i X_j\)を別の式に書き換えましょう。

    ここで、よく考えると、
    \(\frac{1}{N}\sum_{i=1}^{N}X_i\)=μより、
    ●\(\sum_{i=1}^{N}X_i\)=Nμ
    ●\((\sum_{i=1}^{N}X_i)^2\)=\((Nμ)^2\)
    が成り立ちますね。

    【数式その1】を見ると、

    【数式その1】
    \((\sum_{i=1}^{N}X_i)^2\)=\(\sum_{i=1}^{N}X_i ^2\)+\(\sum_{i=1}^{N}\sum_{j=1(i≠j)}^{N}X_i X_j\)

    つまり、
    \((\sum_{i=1}^{N}X_i)^2\)=\(\sum_{i=1}^{N}X_i ^2\)+\(\sum_{i=1}^{N}\sum_{j=1(i≠j)}^{N}X_i X_j\)=\((Nμ)^2\)
    が成り立ちます。式変形すると、
    \(\sum_{i=1}^{N}\sum_{j=1(i≠j)}^{N}X_i X_j\)=\((Nμ)^2\)-\(\sum_{i=1}^{N}X_i ^2\)
    =(カ)
    が成り立ちます。

    ちょっと前の(オ)式に(カ)式を代入します。

    (オ)
    =\(\frac{1}{nN}\)\(\sum_{i=1}^{N}X_i^2\)+\(\frac{1}{n^2}\)\(\frac{n(n-1)}{N(N-1)}\)\(\sum_{i=1}^{N}\sum_{j=1(i≠j)}^{n}X_i X_j\)
    =\(\frac{1}{nN}\)\(\sum_{i=1}^{N}X_i^2\)+\(\frac{1}{n^2}\)\(\frac{n(n-1)}{N(N-1)}\)[\((Nμ)^2\)-\(\sum_{i=1}^{N}X_i ^2\)]
    =(キ)

    (キ)式はμと\(\sum_{i=1}^{N}X_i ^2\)について式変形しましょう。その結果は

    (キ)
    =E[\(\bar{x^2}\)]
    =\(\frac{1}{nN}\)\(\frac{N-n}{N-1}\)\(\sum_{i=1}^{N}X_i^2\)+\(\frac{N(n-1)}{n(N-1)}\)\(μ^2\)
    となります。長かったですね。もうちょっとで完成です。

    標本分散の修正項への導出

    標本分散V(\(\bar{x}\))の式は

    V(\(\bar{x}\))=E[\(\bar{x^2}\)]-E[\(\bar{x}\)]2

    代入しましょう。
    V(\(\bar{x}\))=\(\frac{1}{nN}\)\(\frac{N-n}{N-1}\)\(\sum_{i=1}^{N}X_i^2\)+\(\frac{N(n-1)}{n(N-1)}\)\(μ^2\)-\(μ^2\)
    =(ク)

    (ク)式をまとめると
    (ク)=\(\frac{N-n}{N-1}\)[\(\frac{1}{N}\sum_{i=1}^{N}X_i^2\)-\(μ^2\)]\(\frac{1}{n}\)
    =(ケ)

    (ケ)式の中の、[\(\frac{1}{N}\sum_{i=1}^{N}X_i^2\)-\(μ^2\)]はよく見ると、
    [\(\frac{1}{N}\sum_{i=1}^{N}X_i^2\)-\(μ^2\)]=E[x2]-E[x]2
    =\(σ^2\)
    ですから、まとめると、

    (ケ)つまり、標本分散V(\(\bar{x}\))は
    V(\(\bar{x}\))=\(\frac{N-n}{N-1}\)\(\frac{σ^2}{n}\)

    無限母集団の標本分散は\(\frac{σ^2}{n}\)ですから、修正項は、

    修正項は、\(\frac{N-n}{N-1}\)

    できましたね。お疲れさまでした。

    まとめ

    有限母集団の修正項の導出をわかりやすく解説しました。

    • ①有限母集団からのランダムサンプリング
    • ②有限母集団の標本平均の導出
    • ③修正項の導出に必要な数式
    • ④有限母集団の標本分散の修正項への導出

  • 管理図の良書の紹介(QCプラネッツを読む方がベター)

    管理図の良書の紹介(QCプラネッツを読む方がベター)

    「管理図の良書が無い」、などと困っていませんか?

    こういう期待に答えます。

    本記事のテーマ

    管理図の良書を紹介するけどQCプラネッツを読む方がベター

    結論

    ●管理図の良書自体少ない。
    ●理論を詳しくまとめたものは古すぎる
    ●QCプラネッツの記事を読んだ方がベター
    理論が詳しい本ほど古いです。
    でも古いため、読んでで「なぜ?」と思う内容も多いです。
    なので、QCプラネッツが今、必要とされる管理図の使い方や理論をまとめました。
    一応、数少ない良書を紹介します。

    ●Youtube動画でも解説しています。ご確認ください。

    [themoneytizer id=”105233-2″]

    ①良書のご紹介と解説

    良書一覧

    【1】管理図法―品質管理教程 (1962年) 【評価:◎】
    【評価理由】管理図の使い方、事例、理論が最も詳しい。1962年、1986年版があるが、理論多めの1962年の方がベター。

    【2】新編統計数値表 河出書房 1952 【評価:〇】
    【評価理由】R管理図のd2,d3の導出過程を最も詳しく書いている。しかし、それでも導出の途中経過がわからない。その他多くの統計の数理が紹介されている。

    【3】1回で合格!QC検定®2級テキスト&問題集【評価:〇】
    【評価理由】使い方は理解できる。入門書としては良い。

    【4】【新レベル表対応版】QC検定®受検テキスト1級 (品質管理検定集中講座[1])【評価:〇】
    【評価理由】群内、群間変動、工程異常ルールなど管理図全体を網羅している。試験対策には必須。でも理論はわからない。QC検定®1級で管理図を使った問題が一番苦労するはず。

    【5】管理図の作り方と活用 (新版QC入門講座) 日本規格協会【評価:△】
    【評価理由】使い方は理解できるが、理論がわからない。ほとんどの教科書が、管理図の使い方ばかり説明なので、理論・本質が理解できず悩ましいです。

    【6】管理図活用の基本と応用 管理図を見直そう 日本規格協会 1986【評価:△】
    【評価理由】使い方は理解できるが、理論がわからない。ほとんどの教科書が、管理図の使い方ばかり説明なので、理論・本質が理解できず悩ましいです。

    ●商標使用について、
    ①QC検定®と品質管理検定®は、一般財団法人日本規格協会の登録商標です。
    ➁このコンテンツは、一般財団法人日本規格協会の承認や推奨、その他の検討を受けたものではありません。
    ➂QCプラネッツは、QC検定®と品質管理検定®の商標使用許可を受けています。

    ②良書だけでは不十分

    関連記事、でまとめましたが、管理図の理論や本質が教科書では十分わかりません。次の問いは教科書に十分書いていません。

    1. 「管理図=シューハート管理図」と頭がセットされていませんか?
    2. 管理図係数表の値の導出はできますか?
    3. 管理図係数表の値はnが6以上でないと使えない理由は説明できますか?
    4. 管理図係数表が計量値管理図しかない理由は説明できますか?
    5. 管理図で、群内データnを∞にしたら管理図はどうなるか説明できますか?
    6. 分散公式\(σ_x^2\)=\(σ_w^2\)+\(σ_b^2\)と\(σ_\bar{x^2}\)=\(\frac{σ_w^2}{n}\)+\(σ_b^2\)は導出できますか?
    7. データを層別していったら、群内・群間変動は追って計算できますか?
    8. JISにある異常判定ルールはどのように決まっているか説明できますか?
    9. 第1種の誤り、第2種の誤りと管理図の管理限界との関係、検出力への影響が説明できますか?

    これらを研究することで、管理図の理論・本質が理解できるようになります。

    すべてQCプラネッツの記事に書いていますので、関連記事にて確認ください。

  • error: Content is protected !!