カテゴリー: サンプリング

  • 【必読】「標本の分散」と「標本平均の分散」の違いがわかる

    【必読】「標本の分散」と「標本平均の分散」の違いがわかる

    本記事のテーマ

    【必読】「標本の分散」と「標本平均の分散」の違いがわかる
    • ①サンプリングするとなぜV/nなのか?
    • ➁標本の分散と標本平均の分散の違いを理解する
    • ➂標本平均の分散を実際に計算する
    • ➃ばらつきを減らすにはサンプル数を増やせばいいの?
    「サンプリングするとなんで分散VがV/nになるのかがわからない」
    をわかりやすく解説します!

    QC・統計に勝てるためのサンプリング問題集を販売します!

    QC検定®1級合格したい方、QCに必要なサンプリングをしっかり学びたい方におススメです。
    QC検定®1級、2級でサンプリングの問題で苦戦していませんか?本記事では、QC・統計に勝てるためのサンプリング問題集(20題)を紹介します。

    統計学、QC検定®を勉強すると必ず出て来るV/n
    nが大きくなると分散0になるけどいいの?
    有限なサンプル数で分散求めると母集団の分散からちょっとはずれるのはわかりけど、何でnで割るの?
    元の母集団と同じデータだから、どうサンプリングしても分散はVのままじゃないの?

    と混乱していませんか?

    QCプラネッツもずっと混乱していましたが、この記事書いてようやく区別できました!
    ●商標使用について、
    ①QC検定®と品質管理検定®は、一般財団法人日本規格協会の登録商標です。
    ➁このコンテンツは、一般財団法人日本規格協会の承認や推奨、その他の検討を受けたものではありません。
    ➂QCプラネッツは、QC検定®と品質管理検定®の商標使用許可を受けています。

    関連記事でも記述しましたが、今回はさらにパワーアップさせます!

    【本記事限定】標本平均の分散の注意点(nで割るな!)
    標本平均の分散や検定統計量では分散をサンプル数で割りますね。でも「サンプル数が大きいと分散が低減される」のは不思議だと思いませんか?本記事では、教科書やwebサイトに載っていない、標本平均の分散の注意点をわかりやすく解説します。

    ①サンプリングするとなぜV/nなのか?

    設問文章にある何気ない文字が重要!

    サンプリングや、検定と推定の問題文を上げてみましょう。

    ●サンプリング
    12個のロットをランダムに取り出し、各々から1個の製品をランダムにサンプリングして12個のデータより標本平均を求めて特性の母平均を推定する。このとき、標本平均の推定精度(分散)はいくらか。
    ●検定と推定
    ある部品の特性は、母集団が正規分布に従っている。そのうち10個を抜き出して特性を測定した。次の結果が得られた場合,
    a1,a2,…,a10
    母平均がaといえるかを検定せよ。

    どこがキーポイントかわかりますか?

    慣れないと違和感は感じないのですが。

    ここです!

    ●サンプリング
    12個のロットをランダムに取り出し、各々から1個の製品をランダムにサンプリングして12個のデータより標本平均を求めて特性の母平均を推定する。このとき、標本平均の推定精度(分散)はいくらか。
    ●検定と推定
    ある部品の特性は、母集団が正規分布に従っている。そのうち10個を抜き出して特性を測定した。次の結果が得られた場合,
    a1,a2,…,a10
    平均がaといえるかを検定せよ。

    わかりましたね!
    そうです! 「平均」です。

    なので、もし、

    ●サンプリング
    12個のロットをランダムに取り出し、各々から1個の製品をランダムにサンプリングして12個のデータより標本平均を求めて特性の母平均を推定する。このとき、標本平均の推定精度(分散)はいくらか。
    ●検定と推定
    ある部品の特性は、母集団が正規分布に従っている。そのうち10個を抜き出して特性を測定した。次の結果が得られた場合,
    a1,a2,…,a10
    母平均母集団のデータがaといえるかを検定せよ。

    となっていたら、

    母集団の分散と同じです。
    標本の平均だから分散の式が変わるんです!

    V/nは数学的に正しい

    でも、1つ疑問が有ります。

    標本平均の分散V/nの式って実は正しくない?

    でも、

    数学的に正しいです。

    下の例題で確認しましょう。

    【例題】
    よく、母集団からn個抜き取る場合の、分散をVからV/nにするが、その理由を数式で説明せよ。

    実際に解いてみましょう。
    確率変数\(x_1\),\(x_2\),…, \(x_n\)において、それぞれ独立と仮定すると、
    \(V(\bar{x})\)=\(V(\frac{x_1+x_2+…+x_n}{n})\)
    =\(\frac{1}{n^2}(V(x_1)+V(x_2)+…+V(x_n))\)
    =\(\frac{n}{n^2}(V)\)
    =\(\frac{V}{n}\)
    と、数学的に正しいので、どうしてもこの式を避けることができません!

    1つ値に決まる平均にばらつきがあるのはなぜか?

    サンプリングすると母集団のデータよりばらつき(荒)があるから分散は母集団から変わるのは理解できるが、サンプル数nで割るのは納得できない!
    でも、数式は正しい。
    何か、しっくりこない!
    さまざまなデータ値を総和して個数で割った唯一の値である平均に、ばらつきがあるのはなぜか?もわからないし、この分散がV/nってさらに混乱する!

    ですよね!

    1つ値に決まる平均にばらつきがあるのはなぜか?

    この理由は、

    サンプリングする選び方がたくさんあるから、サンプリングの平均がたくさんできる

    例えば、下図のように、元データがあり、そこから無作為で、サンプリングしたデータの束を、番号1,2,…,nとします。平均は番号分n個あるので、

    標本平均の分散

    \(V(\bar{x})\)は\(\bar{x_1}\),\(\bar{x_2}\),…, \(\bar{x_n}\)のデータのばらつきを見ているわけです。

    まとめると

    ●標本分散は元データ\(x_i\)の集団のばらつきで母集団分散と同じ
    ●標本平均分散は\(V(\bar{x})\)は\(\bar{x_1}\),\(\bar{x_2}\),…, \(\bar{x_n}\)のデータのばらつき
    と、全く別物です。

    「平均」という言葉があるかどうかで判断しましょう。
    折角なので、練習してみましょう。

    ➁標本の分散と標本平均の分散の違いを理解する

    演習1

    問1
    ある部品が1000 個ある。その特性は正規分布N(\(μ,σ^2\))その中から、以下の条件で抜取り、その特性を測定した場合、あるデータ期待値EとVがいくらになるかを2人の部下に聞いた。
    部下A:もともと正規分布N(\(μ,σ^2\))に従うデータなので、どう抜き取っても、E=\(μ\)、V=\(σ^2\)である。
    部下B:教科書の公式からいうと、E=\(μ\)、V=\(\frac{σ^2}{n}\)である。
    どちらの言い分が正しいか? 判断せよ。

    意外と混乱しますよね。分散において、何を指しているかが両部下は違っています。
    ●Aさんは、抜き取ったデータ(標本)そのものの期待値と分散を言っている。
    ●Bさんは、抜き取ったデータ(標本)の平均についての期待値と分散を言っている。

    演習2

    検定と推定の問題もやってみましょう。途中のヒントまで解説しますので、解いてみてください。

    問2
    ある部品の特性は、母集団が正規分布N(100,0.2)に従っている。そのうち10個を抜き出して特性を測定した。次の結果が得られた場合、
    99.9、99.7、100.0、99.9、99.8、99.4、100.0、100.2、99.8、100.1 (平均:99.88)
    (1) 母平均が100.0mmといえるかを検定せよ。
    (2) データ値は100.0mmといえるかを検定せよ。
    ただし、抜き取ったロットの標準偏差はσ=0.2mmと母集団と同じとする。

    実は、
    (1) は教科書でもQC検定®でも必ず載っている問題
    (2) はないので、QCプラネッツが作成

    検定統計量\(z\)=\(\frac{\bar{x}-μ}{σ/\sqrt{n}}\)と暗記しますよね。ここに\(σ/\sqrt{n}\)があります。(1)(2)の違いが理解できるかを確認しましょう。

    (2)はQC検定®でも出題してほしいですね。そしたら面白い!

    ➂標本平均の分散を実際に計算する

    サンプリングがいまいち理解できない理由

    サンプリングがいまいち理解できない、難しいとする理由は

    実データがなく、変な公式しかないので、
    「この式でいいのか? 式の意味がよくわからない」
    まま、代入して終わるので、何を解いているかピントこない。

    なので、実際にデータを用意して、サンプリング後の、「標本平均」の分散を計算してみましょう。

    実際に計算しよう!

    よく、母集団から\(n\)個抜き取る場合の、分散を\(V\)から\(\frac{V}{n}\)にするが、正しいのかどうか、実際にデータを使って確認したい。そのため、母集団100個のデータを用意した。母集団から\(n\)個抜き取る場合の分散は、その\(n\)個ずつ抜き取った\(n\)個のデータの平均値\(\bar{x}\)が100/\(n\)パターンあるので、その\(\bar{x}\)に関する期待値E[\(\bar{x}\)]と分散V[\(\bar{x}\)]を計算すればよい。以下、\(n\)に値を代入して、実際の期待値E[\(\bar{x}\)]と分散V[\(\bar{x}\)]を公式の値と比較せよ。
    (1) n=5の場合(No.1~5,No.6~10,…,No.96~100のデータに区切る)
    (2) n=10の場合(No.1~10,No.11~20,…,No.91~100のデータに区切る)
    (3) n=20の場合(No.1~20,No.21~40,…,No.81~100のデータに区切る)
    (4) n=50の場合(No.1~50,No.51~100のデータに区切る)
    No data No data No data No data No data
    1 11 21 68 41 58 61 75 81 87
    2 2 22 4 42 82 62 45 82 82
    3 35 23 34 43 22 63 18 83 18
    4 34 24 24 44 46 64 26 84 71
    5 52 25 30 45 35 65 88 85 13
    6 54 26 13 46 22 66 51 86 34
    7 25 27 63 47 21 67 68 87 55
    8 57 28 29 48 48 68 32 88 55
    9 84 29 12 49 28 69 69 89 33
    10 95 30 20 50 44 70 31 90 83
    11 51 31 89 51 26 71 48 91 22
    12 49 32 69 52 61 72 50 92 65
    13 9 33 55 53 6 73 25 93 83
    14 85 34 30 54 29 74 50 94 29
    15 24 35 15 55 37 75 57 95 27
    16 19 36 41 56 57 76 81 96 75
    17 64 37 98 57 71 77 86 97 97
    18 83 38 44 58 4 78 64 98 77
    19 78 39 18 59 46 79 43 99 10
    20 65 40 1 60 67 80 23 100 17

    解説

    実際に計算してみましょう。

    結果をまとめると

    n 実際 公式V/n
    1 665.62 665.62
    5 115.98 297.67
    10 50.37 210.49
    20 33.33 148.84
    50 10.76 94.13

    グラフにすると、実際に計算したものと公式では値は異なりますが、傾向は同じことがわかり、サンプル数が増えると、標本平均の分散は小さくなることがわかります。

    また、期待値Eはサンプル数に関係なく同じですね。

    分散

    実際に計算した分散と、公式V/nの値にずれがありますが、公式は理想系なデータである場合、つまり、データが無限になる母集団の場合なので、実際のデータを無限に増やして、サンプル数も無限に増やすと両者は一致します。それを実際に示すのはムリですが、今回データ100個で実演しました。

    ➃ばらつきを減らすにはサンプル数を増やせばいいの?

    ばらつきを小さくしたいからサンプル数を増やすわけではない

    これ、よく勘違いしてしまいますが、

    ばらつきを小さくしたいからサンプル数を増やすわけではない!
    標本平均の分散が小さく見えるだけで、標本そのものの分散は生データのばらつきそのもの

    サンプル数をどの程度取ると、標本分散と標本平均の分散に差が出るかがわかる程度で、
    ばらつきを小さくしたいからサンプル数を増やすわけではない点に注意しましょう。

    「標本の分散」と「標本平均の分散」の違いがわかりましたね!

    まとめ

    「【必読】「標本の分散」と「標本平均の分散」の違いがわかる」をわかりやすく解説しました。

    • ①サンプリングするとなぜV/nなのか?
    • ➁標本の分散と標本平均の分散の違いを理解する
    • ➂標本平均の分散を実際に計算する
    • ➃ばらつきを減らすにはサンプル数を増やせばいいの?
  • 【やっぱり難しい】2段サンプリングの分散が導出できる【まとめ】

    【やっぱり難しい】2段サンプリングの分散が導出できる【まとめ】

    「2段サンプリングの分散がわからない」、と困っていませんか?

    本記事のテーマ

    【やっぱり難しい】2段サンプリングの分散が導出できる【まとめ】
    • ①2段サンプリングの分散公式とは
    • ➁2段サンプリング(関連記事も紹介)
    • ➂2段サンプリングの分散を導出
    • ➃層別、集落サンプリングの分散を導出
    2段サンプリングの方法と
    2段サンプリングの分散公式を
    わかりやすく解説します!

    QC・統計に勝てるためのサンプリング問題集を販売します!

    QC検定®1級合格したい方、QCに必要なサンプリングをしっかり学びたい方におススメです。
    QC検定®1級、2級でサンプリングの問題で苦戦していませんか?本記事では、QC・統計に勝てるためのサンプリング問題集(20題)を紹介します。

    2変数の確率分布関数にまず、慣れましょう!
    期待値、分散の導出から数列・積分も慣れましょう!

    ①2段サンプリングの分散公式とは

    「2段サンプリングの分散」の式があります。

    E(\(\bar{\bar{x}}\))=μ
    V(\(\bar{\bar{x}}\))=\(\frac{M-m}{M-1}・\frac{σ_b^2}{m}\)+\(\frac{N-n}{N-1}・\frac{σ_w^2}{mn}\)
    ・\(m\):1次サンプルの大きさ
    ・\(n\):2次サンプルの大きさ
    ・\(σ_b^2\):1次単位間の特性xの分散
    ・\(σ_w^2\):1次単位内の特性xの分散
    ・M:1次単位の総数
    ・N:1次単位の大きさ
    ・\(\frac{M-m}{M-1},\frac{N-n}{N-1}\):有限修正項
    となりますよね。

    でも、

    難しい。。。

    そこで、

    「2段サンプリングの分散」の式を導出します!

    ちょっとだけ、文字を変えて、
    V(\(\bar{x}\))=\(\frac{M-m}{M-1} \frac{σ_b^2}{m}\)+\(\frac{\bar{N}-\bar{n}}{\bar{N}-1}\frac{σ_w^2}{n}\)
    を導出します。

    ➁2段サンプリング(関連記事も紹介)

    2段サンプリングとは

    2段サンプリングは下図のように、2回サンプリングします。

    1. 1回目はM個の集落からm個をサンプリング
      集落内の\(\bar{N}\)個はすべて抜取
    2. 2回目はm個の集落すべてに対して
      \(\bar{N}\)個から\(\bar{n}\)は抜取

    1回目抜取

    2段サンプリングの分散

    2回目抜取

    2段サンプリングの分散

    QCプラネッツの2段サンプリング記事のご紹介

    2段サンプリング関連記事(ブログとテキスト(PDF))があります。是非確認ください。

    記事のテーマ

    5つあり、最終目標は2段サンプリングの分散が導出できることです。

    1. 有限母集団の修正項が導出できる
    2. 条件付き確率がわかる
    3. 2変数の分散・共分散がわかる
    4. 全分散の公式が導出できる
    5. 2段サンプリングの分散が導出できる(本記事で)

    (1) 有限母集団の修正項が導出できる

    サンプリングでよく出て来る、有限母集団の修正項ですが、公式導出も難しいです。関連記事で丁寧に導出過程を解説しています。

    【必読】有限母集団の修正項の導出ができる
    本記事では有限母集団の修正項(N-n)/(N-1)の導出を途中経過を一切端折らず丁寧に解説しました。

    (2) 条件付き確率がわかる

    高校数学の復習をしましょう。ブログ記事でしたが、テキスト(PDF)にまとめました。

    【QCプラネッツ2回サンプリング プレミアム勉強プリント】

    2つのテーマをまとめています。
    ●「条件付き確率がわかる(2段サンプリングの分散式導出)」
    ●「2段サンプリングの費用関数で最適配分の式が導出できる」

    【必読】条件つき期待値・条件つき分散がわかる(連続型)
    本記事では2段サンプリングの分散公式に必須な 条件付き期待値、条件付き分散、全分散の公式を実例を使って,積分で計算して確認します。

    【必読】条件つき期待値・条件付き分散がわかる(離散型)
    本記事では2段サンプリングの分散公式に必須な 条件付き期待値、条件付き分散、 全分散の公式を実例を使って、数列で計算して確認します。

    (3) 2変数の分散・共分散がわかる

    2変数の確率分布を次に攻略します! 全分散の公式や2段サンプリングの分散は2変数の処理スキルが前提となります。

    同時確率分布の分散、共分散の導出がわかる
    本記事では、2変数の確率分布関数(離散系&連続系)の期待値・分散をわかりやすく解説します。

    (4) 全分散の公式が導出できる

    2段サンプリングの分散に使う、全分散の公式をようやく攻略できるところまで来ました。条件付き確率、2変数の解法がいっぱい出て来ますので、この関連記事は、良い演習になります。

    【必読】全分散の公式の導出がわかる
    本記事では、全分散の公式の導出をわかりやすく解説しています。途中端折りたくなるが大事な計算過程をすべて載せています。全分散の公式、条件つき期待値、条件つき分散を 得意になりましょう。

    (5) 2段サンプリングの分散が導出できる

    これから解説します!

    ➂2段サンプリングの分散を導出

    では、
    V(\(\bar{x}\))=\(\frac{M-m}{M-1} \frac{σ_b^2}{m}\)+\(\frac{\bar{N}-\bar{n}}{\bar{N}-1}\frac{σ_w^2}{n}\)
    を導出します。

    期待値Eの2段階表現方法

    ここで、普段あまり見かけませんが、トリッキーな表現方法を使って変形していきます。こういうところが難しいですね。

    2段サンプリングで得られた、標本平均\(\bar{x}\)の期待値E[\(\bar{x}\)]を考えます。

    もちろん標本平均\(\bar{x}\)は単純に、
    \(\bar{x}\)=\(\frac{1}{m \bar{n}} \sum_{i=1}^{m} \sum_{j=1}^{\bar{n}} x_{ij} \)
    ですね。

    よく見ると、\(\bar{x}\)は
    ●\(i\)について
    ●\(j\)について
    2回平均値を求めていますね。つまり、平均値である期待値Eを計算しているわけなので、

    E[\(\bar{x}\)]=\(E_i E_j^i \)[\(\bar{x}\)]
    という普段使わない表現で置き換えます。

    2段サンプリングの分散V(\(\bar{x}\))を導出

    分散の公式どおり、
    V(\(\bar{x}\))= E[\(\bar{x}^2\)]- E[\(\bar{x}\)]2
    =(式1)
    となり、これを先ほどの2段階の期待値表記に変えます。

    (式1)
    =\(E_i E_j^i \)[\(\bar{x}^2\)]-{\(E_i E_j^i \)[\(\bar{x}\)]}2
    =(式2)

    (式2)に対して、 \(E_i\){\(E_j^i\)[\(\bar{x}\)]}2を追加します。
    (式2)
    =\(E_i E_j^i \)[\(\bar{x}^2\)]-\(E_i\){\(E_j^i\)[\(\bar{x}\)]}2
    +\(E_i\){\(E_j^i\)[\(\bar{x}\)]}2
    -{\(E_i E_j^i \)[\(\bar{x}\)]}2
    =\(E_i\)[\(E_j^i\)[\(\bar{x}^2\)]-{\(E_j^i\)[\(\bar{x}\)]}2]
    +[\(E_i\){\(E_j^i\)[\(\bar{x}\)]}2-{\(E_i E_j^i\)[\(\bar{x}\)]}2]
    =\(E_i\){\(V_j^i(\bar{x})\)}+\(V_i\){(\(E_j^i (\bar{x})\))
    =(式3)
    と強引ですが、まとめることができます。

    ここで、\(V_j^i\)は第\(i\)集落内での分散とします。

    2段サンプリングの分散は
    やっぱり難しい!

    2段サンプリングの分散V(\(\bar{x}\))第1項をまとめる

    (式3)の第1項をまとめていきます。

    \(E_i\){\(V_j^i(\bar{x}\))}
    =\(E_i\){\(V_j^i (\frac{1}{m \bar{n}} \sum_{i=1}^{m} \sum_{j=1}^{\bar{n}}x_{ij} )\)}
    として、\(\frac{1}{m}\sum_{i=1}^{m} \)を分散Vの外に出します。
    =\(E_i\){\(\frac{1}{m^2} \)\(\sum_{i=1}^{m} V_j^i(\frac{1}{\bar{n}} \sum_{j=1}^{\bar{n}} x_{ij} )\)}
    さらに、\(\frac{1}{m^2}\)を\(\frac{1}{m}\)・\(\frac{1}{m}\)に分けます。
    =\(\frac{1}{m}E_i\){\(\frac{1}{m} \sum_{i=1}^{m} V_j^i(\frac{1}{\bar{n}} \sum_{j=1}^{\bar{n}} x_{ij} )\)}
    =(式4)

    ここで、見ずらいですが、
    ●\(V_j^i(\frac{1}{\bar{n}} \sum_{j=1}^{\bar{n}}x_{ij} )\)の
    \(\frac{1}{\bar{n}} \sum_{j=1}^{\bar{n}}x_{ij}\)=\(\bar{x}\)なので、
    \(V_j^i(\frac{1}{\bar{n}} \sum_{j=1}^{\bar{n}}x_{ij} )\)= \(V_j^i(\bar{x})\)
    を代入します。

    すると、
    \(V_j^i(\bar{x})\)=\(\frac{\bar{N}-\bar{n}}{\bar{N}-1} \frac{σ_i^2}{\bar{n}}\)
    と有限母集団の時の係数\(\frac{\bar{N}-\bar{n}}{\bar{N}-1}\)が付きますね。

    有限母集団については関連記事があります。ご確認ください。丁寧に導出していますが、それでも難しい内容です!

    【必読】有限母集団の修正項の導出ができる
    本記事では有限母集団の修正項(N-n)/(N-1)を丁寧にわかりやすく解説しました。

    (式4)を計算すると、
    (式4)
    =\(\frac{1}{m}E_i\){\(\frac{1}{m} \sum_{i=1}^{m}\frac{\bar{N}-\bar{n}}{\bar{N}-1} \frac{σ_i^2}{\bar{n}}\)}
    =(式5)

    そして、
    ●\(E_i\)[\(\frac{1}{m} \sum_{i=1}^{m}\frac{\bar{N}-\bar{n}}{\bar{N}-1}\)]
    を、期待値の性質を使って
    ●\(\frac{1}{m}・\frac{1}{M}\sum_{i=1}^{M}\frac{\bar{N}-\bar{n}}{\bar{N}-1}\)
    変えると(式5)は、
    =\(\frac{1}{m} \frac{\bar{N}-\bar{n}}{\bar{N}-1} \frac{σ_w^2}{\bar{n}}\)
    となり、
    \(n\)=\(m \bar{n}\)から、
    =\( \frac{\bar{N}-\bar{n}}{\bar{N}-1} \frac{σ_w^2}{n}\)
    となり、2段サンプリングの分散の第1項ができます。

    なお、
    ●\(σ_i^2\)=\(\frac{1}{\bar{N}}\sum_{j=1}^{\bar{N}}(x_{ij}-μ_i)^2\)
    ●\(σ_w^2\)=\(\frac{1}{M} \sum_{i=1}^{M} σ_i^2\)
    とします。

    2段サンプリングの分散は
    やっぱり難しい!

    2段サンプリングの分散V(\(\bar{x}\))第2項をまとめる

    (式3)の第2項をまとめていきます。

    (式3)第2項
    =\(V_i (E_j^i (\bar{x}))\)
    =\(V_i (E_j^i (\frac{1}{m \bar{n}} \sum_{i=1}^{m} \sum_{j=1}^{\bar{n}} x_{ij}))\)
    =\(V_i (\frac{1}{m} \sum_{i=1}^{m} E_j^i (\frac{1}{\bar{n}} \sum_{j=1}^{\bar{n}} x_{ij}))\)

    ここで、\( E_j^i \)[\(\frac{1}{\bar{n}} \sum_{j=1}^{\bar{n}} x_{ij}\)]=\(μ_i\)から
    =\(V_i (\frac{1}{m} \sum_{i=1}^{m} μ_i )\)
    有限母集団の分散を意識して、
    =\(\frac{M-m}{M-1} \frac{σ_b^2}{m}\)
    となります。

    よって、第1項と第2項を入れ換えて、まとめると

    V(\(\bar{x}\))=\(\frac{M-m}{M-1} \frac{σ_b^2}{m}\)+\(\frac{\bar{N}-\bar{n}}{\bar{N}-1}\frac{σ_w^2}{n}\)

    が導出できました。

    ➃層別、集落サンプリングの分散を導出

    2段サンプリングの分散の式

    再掲すると、

    V(\(\bar{x}\))=\(\frac{M-m}{M-1} \frac{σ_b^2}{m}\)+\(\frac{\bar{N}-\bar{n}}{\bar{N}-1}\frac{σ_w^2}{n}\)

    層別サンプリングの分散を導出

    第2項の式のだけになりますので、2段サンプリングの分散の式がわかればOKですね。

    V(\(\bar{x}\))=\(\frac{\bar{N}-\bar{n}}{\bar{N}-1}\frac{σ_w^2}{n}\)

    集落サンプリングの分散を導出

    第1項の式のだけになりますので、2段サンプリングの分散の式がわかればOKですね。

    V(\(\bar{x}\))=\(\frac{M-m}{M-1} \frac{σ_b^2}{m}\)

    まとめ

    「【やっぱり難しい】2段サンプリングの分散が導出できる【まとめ】」をわかりやすく解説しました。

    • ①2段サンプリングの分散公式とは
    • ➁2段サンプリング(関連記事も紹介)
    • ➂2段サンプリングの分散を導出
    • ➃層別、集落サンプリングの分散を導出
  • 【必読】全分散の公式の導出がわかる

    【必読】全分散の公式の導出がわかる

    本記事のテーマ

    【必読】全分散の公式の導出がわかる
    • ①【共通】2段サンプリングの分散公式を導出するために知っておくべき内容
    • ➁事前に読んでおくべき関連記事
    • ➂E[E[Y|X]]=E[Y]の導出
    • ➃全分散の導出

    QC・統計に勝てるためのサンプリング問題集を販売します!

    QC検定®1級合格したい方、QCに必要なサンプリングをしっかり学びたい方におススメです。
    QC検定®1級、2級でサンプリングの問題で苦戦していませんか?本記事では、QC・統計に勝てるためのサンプリング問題集(20題)を紹介します。

    ①【共通】2段サンプリングの分散公式を導出するために知っておくべき内容

    2段サンプリングの分散の式

    「2段サンプリングの分散」の式があります。

    E(\(\bar{\bar{x}}\))=μ
    V(\(\bar{\bar{x}}\))=\(\frac{M-m}{M-1}・\frac{σ_b^2}{m}\)+\(\frac{N-n}{N-1}・\frac{σ_w^2}{mn}\)
    ・\(m\):1次サンプルの大きさ
    ・\(n\):2次サンプルの大きさ
    ・\(σ_b^2\):1次単位間の特性xの分散
    ・\(σ_w^2\):1次単位内の特性xの分散
    ・M:1次単位の総数
    ・N:1次単位の大きさ
    ・\(\frac{M-m}{M-1},\frac{N-n}{N-1}\):有限修正項
    となりますよね。

    でも、

    この式は何なの?
    何でこんな難しい式なの?
    覚えられない。。。

    と困ってしまいますよね。QCプラネッツも苦労しました。

    そこで、

    せめて、「2段サンプリングの分散」の式を導出したい!

    という思いで、解説していきます。

    2段サンプリングの分散の式に必要な内容

    まとめると、以下を理解しておく必要があります。

    1. 条件付き確率
    2. 2変数の確率分布関数(同時確率質量関数)
    3. 同時確率分布の分散、共分散の導出
    4. 条件付き確率の期待値・分散
    5. 全分散の公式の導出
    6. 2段サンプリングの分散の公式導出
    2段サンプリングは式が複雑!
    公式暗記・代入だけでは意味不明!
    サンプリングの分散はみんな苦手

    なので、1つ1つ解説します。

    今回は第5弾として「全分散の公式の導出」を解説します。

    ➁事前に読んでおくべき関連記事

    ●いきなり、全分散の公式を理解しようとすると、挫折します。そこで、具体事例の計算過程を一回読んでから、公式導出するとかなり身近な式になります。

    関連記事でおさえておくべきポイント

    1. E(Y|X)はどんな式か? 和または積分対象はX,Yどちらか?
    2. E(E(Y|X))の計算過程。 和または積分対象はX,Yのどちらか?
    3. E(Y2|X)に慣れておく
    4. V(Y|X)はどんな式か? 和または積分対象はX,Yどちらか?
    5. E(V(Y|X)]の計算過程。 和または積分対象はX,Yのどちらか?
    6. V(E(Y|X)]の計算過程。 和または積分対象はX,Yのどちらか?
    7. 全分散の公式が成り立つ計算過程

    全分散の公式を含めて、条件つき期待値、条件つき分散を網羅して解説しています。

    離散型(数列)で解く場合(本記事も数列版で全分散の公式を導出します。)

    【必読】条件つき期待値・条件付き分散がわかる(離散型)
    本記事では2段サンプリングの分散公式に必須な 条件付き期待値、条件付き分散、 全分散の公式を実例を使って、数列で計算して確認します。

    連続型(積分)で解く場合

    【必読】条件つき期待値・条件つき分散がわかる(連続型)
    本記事では2段サンプリングの分散公式に必須な 条件付き期待値、条件付き分散、全分散の公式を実例を使って,積分で計算して確認します。

    では、一般化して公式導出に入ります。

    ➂E[E[Y|X]]=E[Y]の導出

    導出

    文字式でさっと書いていきます。

    E(E(Y|X=xi))
    =\(\sum_{i} (E(Y|X=x_i))f_{xi}\)
    =\(\sum_{i}(\sum_{j} y_j f_{Y|X}(y_i|x_i)) f_{xi}\)

    ここで、\(y_j\)を前に出して、fを整理します。
    =\(\sum_{j} y_j(\sum_{i} f_{Y|X}(y_i|x_i) f_{xi})\)
    =\(\sum_{j} y_j(\sum_{i} f(x_i,y_j)\)
    =\(\sum_{j} y_j f_Y(y_j)\)
    =E(Y)
    となります。

    ここで、1つわかりにくいポイントがあります。
    \(\sum_{i} f(x_i,y_j)\) ⇒ \( f_Y(y_j)\)
    になぜ変わるのか?
    です。

    式だけではわかりにくいので、上の関連記事の事例を使って、具体的な数字を使って計算します。

    実例で詳細に解説

    結果的に、
    \(\sum_{i} f(x_i,y_j)\) ⇒ \( f_Y(y_j)\)
    が一致します。文字で解くと難しい場合は、具体例で理解しておくとよいです。

    関連記事の例題から具体的な値で比較しましょう。
    E(E(Y|X))の値は下表のようにまとめる事ができます。

    x/y
    y1

    \(f_{xi,y1}\)

    y2

    \(f_{xi,y2}\)

    y3

    \(f_{xi,y3}\)

    \(f_{xi}\)

    x1 [1 ×\(\frac{1}{2}\) +2 ×\(\frac{1}{4}\) +3 ×\(\frac{1}{4}\)] ×\(\frac{1}{2}\) =\(\frac{7}{8}\)
    x2 [1 ×\(\frac{1}{4}\) +2 ×\(\frac{1}{4}\) +3 ×\(\frac{1}{2}\)] ×\(\frac{1}{2}\) =\(\frac{7}{9}\)
    計 E[Y]= 2

    上の表の⑧は
    ⑧=[①×➁+➂×➃+⑤×⑥]×⑦
    で計算して、
    E[E[Y|X]]=E[Y]
    を計算してます。

    なお、E[Y]の求め方は、下表通りです。

    x/y
    y1

    \(f_y(y1)\)

    y2

    \(f_{y}(y2)\)

    y3

    \(f_y(y3)\)

    x1 [1 ×\(\frac{3}{8}\) +2 ×\(\frac{2}{8}\) +3 ×\(\frac{3}{8}\)] =2

    上の2つの表を比較すると、

    x/y
    \(f_{xi,y1}\)

    \(f_{xi,y2}\)

    \(f_{xi,y3}\)
    x1 \(\frac{1}{2}\) \(\frac{1}{4}\) \(\frac{1}{4}\)
    x2 \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{2}\)
    x/y
    \(f_y(y1)\)

    \(f_{y}(y2)\)

    \(f_y(y3)\)
    x1 \(\frac{3}{8}\) \(\frac{2}{8}\) \(\frac{3}{8}\)

    確かに、
    \(\sum_{i} f(x_i,y_j)\) ⇒ \( f_Y(y_j)\)
    が一致します。文字で解くと難しい場合は、具体例で理解しておくとよいです。

    ここまで細かく解説するのは、QCプラネッツだけですね。

    ➃全分散の導出

    V(Y|X)の導出

    機械的に、
    V(Y)=E(Y2)-E(Y) 2
    ですから、

    V(Y|X) =E(Y2|X)-E(Y|X) 2
    です。

    E(V(Y|X),V(E(Y|X))の導出

    ●V(Y|X)の期待値E(V(Y|X)ですが、
    E(V(Y|X)
    =E(E(Y2|X)-E(Y|X) 2)
    = E(E(Y2|X))-E(E(Y|X) 2)

    ここで、E(E(Y|X))=E(Y)ですから、
    E(Y|X)⇒E(Y2|X)と見ると、

    E(E(Y2|X))=E(Y2)です。あら、不思議!

    よって、
    E(V(Y|X)= E(Y2)- E(E(Y|X) 2) …(式1)

    ●次に、E(Y|X)の分散V(E(Y|X)) ですが、
    V(E(Y|X))
    =E(E(Y|X) 2)-(E(E(Y|X)))2

    ここで、E(E(Y|X))=E(Y)ですから、

    よって、
    V(E(Y|X))=E(E(Y|X) 2)-(E(Y))2…(式2)

    全分散の導出

    (式1)+(式2)より、下の色部分がキャンセルされます。
    E(V(Y|X))= E(Y2)-E(E(Y|X) 2) …(式1)
    V(E(Y|X))= E(E(Y|X) 2)-(E(Y))2…(式2)

    よって、
    E(V(Y|X))+ V(E(Y|X))= E(Y2)–(E(Y))2=V(Y)
    が成り立ちます。

    全分散の公式
    V(Y)= E(V(Y|X))+ V(E(Y|X))

    が導出できました。

    まとめ

    全分散の公式の導出をわかりやすく解説しました。

    • ①【共通】2段サンプリングの分散公式を導出するために知っておくべき内容
    • ➁事前に読んでおくべき関連記事
    • ➂E[E[Y|X]]=E[Y]の導出
    • ➃全分散の導出
  • 【必読】条件つき期待値・条件付き分散がわかる(離散型)

    【必読】条件つき期待値・条件付き分散がわかる(離散型)

    本記事のテーマ

    条件付き期待値・条件付き分散がわかる(離散型)
    • ①【共通】2段サンプリングの分散公式を導出するために知っておくべき内容
    • ➁例題と条件付き確率
    • ➂条件付き期待値
    • ➃条件付き分散がわかる

    QC・統計に勝てるためのサンプリング問題集を販売します!

    QC検定®1級合格したい方、QCに必要なサンプリングをしっかり学びたい方におススメです。
    QC検定®1級、2級でサンプリングの問題で苦戦していませんか?本記事では、QC・統計に勝てるためのサンプリング問題集(20題)を紹介します。

    ①【共通】2段サンプリングの分散公式を導出するために知っておくべき内容

    2段サンプリングの分散の式

    「2段サンプリングの分散」の式があります。

    E(\(\bar{\bar{x}}\))=μ
    V(\(\bar{\bar{x}}\))=\(\frac{M-m}{M-1}・\frac{σ_b^2}{m}\)+\(\frac{N-n}{N-1}・\frac{σ_w^2}{mn}\)
    ・\(m\):1次サンプルの大きさ
    ・\(n\):2次サンプルの大きさ
    ・\(σ_b^2\):1次単位間の特性xの分散
    ・\(σ_w^2\):1次単位内の特性xの分散
    ・M:1次単位の総数
    ・N:1次単位の大きさ
    ・\(\frac{M-m}{M-1},\frac{N-n}{N-1}\):有限修正項
    となりますよね。

    でも、

    この式は何なの?
    何でこんな難しい式なの?
    覚えられない。。。

    と困ってしまいますよね。QCプラネッツも苦労しました。

    そこで、

    せめて、「2段サンプリングの分散」の式を導出したい!

    という思いで、解説していきます。

    2段サンプリングの分散の式に必要な内容

    まとめると、以下を理解しておく必要があります。

    1. 条件付き確率
    2. 2変数の確率分布関数(同時確率質量関数)
    3. 同時確率分布の分散、共分散の導出
    4. 条件付き確率の期待値・分散
    5. 全分散の公式の導出
    6. 2段サンプリングの分散の公式導出
    2段サンプリングは式が複雑!
    公式暗記・代入だけでは意味不明!
    サンプリングの分散はみんな苦手

    なので、1つ1つ解説します。

    今回は第4弾として「条件付き確率の期待値・分散」を解説します。

    第4弾として「条件付き確率の期待値・分散」を解説します。

    ➁例題と条件付き確率

    例題

    関連記事と同じ例題で解説します。関連記事もご確認ください。

    本記事では、2変数の確率分布関数(離散系&連続系)の期待値・分散をわかりやすく解説します。

    ●2次元の確率変数(X,Y)が、下表のような分布を持っている。

    X/Y 1 2 3
    1 \(\frac{2}{8}\) \(\frac{1}{8}\) \(\frac{1}{8}\) \(\frac{1}{2}\)
    2 \(\frac{1}{8}\) \(\frac{1}{8}\) \(\frac{2}{8}\) \(\frac{1}{2}\)
    \(\frac{3}{8}\) \(\frac{2}{8}\) \(\frac{3}{8}\) 1

    (1)条件付き確率\(f_{Y|X}(y|x)\)を求めよ。
    (2)条件付き期待値E(Y|X)、E(Y2|X)、E(Y)を求め、重要公式E(Y)=E(E(Y|X))が成り立つことを確認せよ。
    (3)条件付き分散V[Y|X]を求め、全分散の公式が成り立つことを確認せよ。

    期待値と分散のフルセットを計算してみましょう。

    条件付き確率

    (1)条件付き確率\(f_{Y|X}(y|x)\)を求めよ。

    まず、確率の式を書いてから、関数の式に変えましょう。

    ●P(A|B)=\(\frac{P(A∩B)}{P(B)}\)ですから、例えば、
    P(Y=1|X=1)=(2/8)/(1/2)=1/4です。同様に全部計算すると、次の表になります。機械的に計算しましょう。

    P(Y|X) Y=1 Y=2 Y=3
    P(Y|X=1) \(\frac{1}{2}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{2}\)
    P(Y|X=2) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{2}{2}\) \(\frac{1}{1}\)

    ➂条件付き期待値

    「(2)条件付き期待値E(Y|X)、E(Y2|X)、E(Y)を求め、重要公式E(Y)=E(E(Y|X))が成り立つことを確認せよ。」を確認します。

    条件付き期待値の計算

    E(Y|X)、E(Y2|X)を計算します。

    ●E(Y|X=i)=\( \sum_{j} y_j P(Y|X=i)\)で計算します。yで加算しますが、個々のXの値について期待値を計算します。

    ●E(Y|X=1)= \( \sum_{j} y_j P(Y|X=1)\)
    =\(1×\frac{\frac{2}{8}}{\frac{1}{2}}\)+\(2×\frac{\frac{1}{8}}{\frac{1}{2}}\)+\(3×\frac{\frac{1}{8}}{\frac{1}{2}}\)
    =\(\frac{7}{4}\)

    ●E(Y|X=2)= \( \sum_{j} y_j P(Y|X=2)\)
    =\(1×\frac{\frac{1}{8}}{\frac{1}{2}}\)+\(2×\frac{\frac{1}{8}}{\frac{1}{2}}\)+\(3×\frac{\frac{2}{8}}{\frac{1}{2}}\)
    =\(\frac{9}{4}\)

    つぎに、E(Y2|X)ですが、
    E(Y|X=i)=\( \sum_{j} y_j P(Y|X=i\))から
    E(Y|X=i)=\( \sum_{j} y_j^2 P(Y|X=i)\)に変えて加算します。

    ●E(Y2|X=1)= \( \sum_{j} y_j^2 P(Y|X=1)\)
    =\(1^2×\frac{\frac{2}{8}}{\frac{1}{2}}\)+\(2^2×\frac{\frac{1}{8}}{\frac{1}{2}}\)+\(3^2×\frac{\frac{1}{8}}{\frac{1}{2}}\)
    =\(\frac{15}{4}\)

    ●E(Y 2|X=2)= \( \sum_{j} y_j^2 P(Y|X=2)\)
    =\(1^2×\frac{\frac{1}{8}}{\frac{1}{2}}\)+\(2^2×\frac{\frac{1}{8}}{\frac{1}{2}}\)+\(3^2×\frac{\frac{2}{8}}{\frac{1}{2}}\)
    =\(\frac{23}{4}\)

    条件付きの期待値の特徴

    上のE(Y|X), E(Y2|X)を計算すると、奇妙な感じになります。なぜなら、

    E(Y|X=i)、E(Y2|X=i)と
    X=iの個々の値が出るから

    これは、実は問題ありません。
    連続系の問いでE(Y|X), E(Y2|X)を計算すると、E(Y|X), E(Y2|X)そのものの値ではなく、
    関数になります。

    重要公式E(Y)=E(E(Y|X))の確認

    ●E(Y)=E(E(Y|X))を確認します。この式の証明は別途、他の記事で解説します。本記事では、計算が合うことや計算過程を確認します。

    ●ここで、E(Y)については、関連記事ですでに計算しています。ご確認ください。

    本記事では、2変数の確率分布関数(離散系&連続系)の期待値・分散をわかりやすく解説します。

    ●E(Y)自体は非常に簡単で、
    E(Y)=1×\(\frac{3}{8}\)+2×\(\frac{2}{8}\)+3×\(\frac{3}{8}\)=2
    でした。

    では、重要公式E(Y)=E(E(Y|X))の確認をしましょう。

    E(E(Y|X))が難しいですが、E(*) の中「*」を意識して、
    E(*)=∑ (*) f(★) で計算すればよいです。

    E(E(Y|X))=\(\sum_{i=1}^{2} E(Y|X) f_Y(y_i)\)
    =\(\frac{7}{4}・\frac{1}{2}+\frac{9}{4}・\frac{1}{2}\)
    =2
    と一致しましたね。

    ➃条件付き分散がわかる

    「(3)条件付き分散V[Y|X]を求め、全分散の公式が成り立つことを確認せよ。」を確認します。

    条件付き分散の計算

    V(Y|X)、E(V(Y|X))、V(E(Y|X))を計算していきます。

    ●V(Y|X)ですが、焦らず、分散公式を思い出します。
    V[X]=E[X2]-E[X]2
    でしたね。X⇒Y|Xに変えればOKです。でも、これでも代入しにくいので解いてみましょう。

    V(Y|X=i)= E[Y2|X=i]-E[Y|X=i]2
    です。X2⇒Y2|Xに注意します。
    実は、
    E[Y2|X=i]とE[Y|X=i]は計算済です。

    V(Y|X=1)= E[Y2|X=1]-E[Y|X=1]2
    =\(\frac{15}{4}-(\frac{7}{4})^2\)
    =\(\frac{11}{16}\)

    V(Y|X=2)= E[Y2|X=2]-E[Y|X=2]2
    =\(\frac{23}{4}-(\frac{9}{4})^2\)
    =\(\frac{11}{16}\)

    ●次に全分散の公式への下ごしらえをします。

    ●E(V(Y|X))を計算します。V(Y|X)の期待値なんて、どうやって計算するか、難しそうです。しっかり見ていきます。Y|XはX=iごとに計算していきます。
    E(V(Y|X=i)) = \(\sum_{i} V(Y|X=i) f_X(x=i)\)
    =\(\frac{11}{16}・\frac{1}{2}+\frac{11}{16}・\frac{1}{2}\)
    =\(\frac{11}{16}\)

    ●V(E(Y|X))を計算します。E(Y|X)の分散なんて、どうやって計算するか、難しそうです。しっかり見ていきます。xの関数なのでxで積分します。
    V(E(Y|X))=E(E(Y|X)2)-E(E(Y|X)) 2
    =\(\sum_{i} E(Y|X)^2 f_X(x=i)\)- \((\sum_{i} E(Y|X) f_X(x=i))^2\)
    =[\((\frac{7}{4})^2・\frac{1}{2}+(\frac{9}{4})^2・\frac{1}{2}\)]
    -\([\frac{7}{4})・\frac{1}{2}+\frac{9}{4}・\frac{1}{2}]^2\)
    =\(\frac{1}{16}\)

    となります。随分計算が大変でした。

    全分散の公式の確認

    2段サンプリングの分散導出に必須な全分散の公式

    V(Y)= V(E(Y|X))+ E(V(Y|X))
    を確認しましょう。

    ●全分散の公式の(右辺)を合算します。
    V(E(Y|X))+ E(V(Y|X))
    =\(\frac{11}{16}+\frac{1}{16}\)
    =\(\frac{3}{4}\)
    =V(Y)
    と一致します。

    ●証明は別途、他の記事で解説しますが、連続型で全分散の公式が成り立つことを確認しました。

    重い例題でしたが、ちゃんと計算できました。教科書では、抽象的な公式導出ばかり書いていますが、実例で計算するのは意外と難しいので、何度も確認しましょう。

    まとめ

    条件付き期待値・条件付き分散がわかる(離散型)をわかりやすく解説しました。

    • ①【共通】2段サンプリングの分散公式を導出するために知っておくべき内容
    • ➁例題と条件付き確率
    • ➂条件付き期待値
    • ➃条件付き分散がわかる
  • 【必読】条件つき期待値・条件つき分散がわかる(連続型)

    【必読】条件つき期待値・条件つき分散がわかる(連続型)

    本記事のテーマ

    条件付き期待値・条件付き分散がわかる(連続型)
    • ①【共通】2段サンプリングの分散公式を導出するために知っておくべき内容
    • ➁例題と条件付き確率
    • ➂条件付き期待値
    • ➃条件付き分散がわかる

    QC・統計に勝てるためのサンプリング問題集を販売します!

    QC検定®1級合格したい方、QCに必要なサンプリングをしっかり学びたい方におススメです。
    QC検定®1級、2級でサンプリングの問題で苦戦していませんか?本記事では、QC・統計に勝てるためのサンプリング問題集(20題)を紹介します。

    2変数の確率分布関数にまず、慣れましょう!
    条件付き期待値・条件付き分散の公式導出はよく教科書にあるけど、具体的な問題は意外と解けないし、例題を使った解説書が少ない。

    本記事でばっちりおさえましょう。

    ①【共通】2段サンプリングの分散公式を導出するために知っておくべき内容

    2段サンプリングの分散の式

    「2段サンプリングの分散」の式があります。

    E(\(\bar{\bar{x}}\))=μ
    V(\(\bar{\bar{x}}\))=\(\frac{M-m}{M-1}・\frac{σ_b^2}{m}\)+\(\frac{N-n}{N-1}・\frac{σ_w^2}{mn}\)
    ・\(m\):1次サンプルの大きさ
    ・\(n\):2次サンプルの大きさ
    ・\(σ_b^2\):1次単位間の特性xの分散
    ・\(σ_w^2\):1次単位内の特性xの分散
    ・M:1次単位の総数
    ・N:1次単位の大きさ
    ・\(\frac{M-m}{M-1},\frac{N-n}{N-1}\):有限修正項
    となりますよね。

    でも、

    この式は何なの?
    何でこんな難しい式なの?
    覚えられない。。。

    と困ってしまいますよね。QCプラネッツも苦労しました。

    そこで、

    せめて、「2段サンプリングの分散」の式を導出したい!

    という思いで、解説していきます。

    2段サンプリングの分散の式に必要な内容

    まとめると、以下を理解しておく必要があります。

    1. 条件付き確率
    2. 2変数の確率分布関数(同時確率質量関数)
    3. 同時確率分布の分散、共分散の導出
    4. 条件付き確率の期待値・分散
    5. 全分散の公式の導出
    6. 2段サンプリングの分散の公式導出
    2段サンプリングは式が複雑!
    公式暗記・代入だけでは意味不明!
    サンプリングの分散はみんな苦手

    なので、1つ1つ解説します。

    今回は第4弾として「条件付き確率の期待値・分散」を解説します。

    第4弾として「条件付き確率の期待値・分散」を解説します。

    ➁例題と条件付き確率

    例題

    2次元の確率変数(X,Y)の同時確率密度関数が
    \(f(x,y)=\frac{1}{4}(x+2y)\) (0 ≤ \(x\) ≤ 2, 0 ≤ \(y\) ≤ 1)
    \(f_X(x)\)=\(\frac{1}{4}(x+1)\)
    \(f_Y(y)\)=\(\frac{1}{2}(1+2y)\)
    で表されている。
    (1)条件付き確率\(f_{Y|X}(y|x)\)を求めよ。
    (2)条件付き期待値E(Y|X)、E(Y2|X)、E(Y)を求め、重要公式E(Y)=E(E(Y|X))が成り立つことを確認せよ。
    (3)条件付き分散V[Y|X]を求め、全分散の公式が成り立つことを確認せよ。

    全盛りです。1つずつ解いていきましょう。大丈夫です。

    条件付き確率

    (1)条件付き確率\(f_{Y|X}(y|x)\)を求めよ。

    条件付き確率

    まず、確率の式を書いてから、関数の式に変えましょう。

    ●P(A|B)=\(\frac{P(A∩B)}{P(B)}\)ですから
    \(f_{Y|X}(y|x)\)= \(\frac{f(x,y)}{f_X(x)}\)となります。代入すると
    \(f_{Y|X}(y|x)\)= \(\frac{f(x,y)}{f_X(x)}\)=\(\frac{x+2y}{x+1}\)

    なお、逆に\(f_{X|Y}(x|y)\)なら、
    \(f_{X|Y}(x|y)\)= \(\frac{f(x,y)}{f_Y(y)}\)=\(\frac{x+2y}{2(1+2y)}\)
    となります。機械的に代入すればOKですね。

    ➂条件付き期待値

    ➂条件付き期待値

    「(2)条件付き期待値E(Y|X)、E(Y2|X)、E(Y)を求め、重要公式E(Y)=E(E(Y|X))が成り立つことを確認せよ。」を確認します。

    条件付き期待値の計算

    E(Y|X)、E(Y2|X)を計算します。

    ●E(Y|X)=\(\int_0^1 y f_{Y|X}(y|x)dy\)で計算します。yで積分します。

    ●E(Y|X)=\(\int_0^1 y f_{Y|X}(y|x)dy\)
    =\(\int_0^1 y \frac{x+2y}{x+1} dy\)
    =\(\frac{1}{x+1}\left[ \frac{x}{2} y^2 +\frac{2}{3} y^3 \right]_0^1\)
    =\(\frac{1}{x+1} (\frac{x}{2}+\frac{2}{3})\)
    =\(\frac{3x+4}{6(x+1)}\)

    つぎに、E(Y2|X)ですが、
    \(\int_0^1 y f_{Y|X}(y|x)dy\)から
    \(\int_0^1 y^2 f_{Y|X}(y|x)dy\)に変えて積分します。

    ●E(Y2|X)= \(\int_0^1 y^2 f_{Y|X}(y|x)dy\)
    =\(\int_0^1 y^2 \frac{x+2y}{x+1} dy\)
    =\(\frac{1}{x+1}\left[ \frac{x}{3} y^3 +\frac{1}{2} y^4 \right]_0^1\)
    =\(\frac{1}{x+1} (\frac{x}{3}+\frac{1}{2})\)
    =\(\frac{2x+3}{6(x+1)}\)

    条件付きの期待値の特徴

    上のE(Y|X), E(Y2|X)を計算すると、奇妙な感じになります。なぜなら、

    値ではなく、関数の式で出て来るから

    これは、実は問題ありません。
    離散系の問いでE(Y|X), E(Y2|X)を計算すると、E(Y|X), E(Y2|X)そのものの値ではなく、
    E(Y|X=i) (i=1,…,n)についてそれぞれ個別に値を求める
    E(Y2|X=i) (i=1,…,n)についてそれぞれ個別に値を求める
    ことになります。連続型の場合は関数で表現することに相当します。

    重要公式E(Y)=E(E(Y|X))の確認

    ●E(Y)=E(E(Y|X))を確認します。この式の証明は別途、他の記事で解説します。本記事では、計算が合うことや計算過程を確認します。

    ●ここで、E(Y)については、関連記事ですでに計算しています。ご確認ください。

    本記事では、2変数の確率分布関数(離散系&連続系)の期待値・分散をわかりやすく解説します。

    ●E(Y)= \(\int_0^1 y f_Y(y)dy\)
    =\(\frac{1}{2}\int_0^1 y (1+2y) dy\)
    =\(\frac{1}{2}\left[ \frac{1}{2} y^2 +\frac{2}{3} y^3 \right]_0^1\)
    =\(\frac{7}{12}\)
    でした。

    では、重要公式E(Y)=E(E(Y|X))の確認をしましょう。

    E(E(Y|X))が難しいですが、E(*) の中「*」を意識して、
    E(*)=∫ (*) f(★) で計算すればよいです。

    なお、E(*) の中「*」はE(Y|X)= \(\frac{3x+4}{6(x+1)}\) とxの式なので、f(★)の★はxで考えます。

    E(E(Y|X))= \(\int_0^2 E(Y|X) f_X(x)dx\)
    =\(\int_0^2 \frac{3x+4}{6(x+1)} \frac{1}{4}(x+1) dx\)
    =\(\frac{1}{24} \int_0^2 (3x+4) dx \)
    =\(\frac{1}{24}\left[ \frac{3}{2} x^2 + 4x \right]_0^2\)
    =\(\frac{1}{24} 14\)
    =\(\frac{7}{12}\)
    =E(Y)
    と一致しましたね。

    ➃条件付き分散がわかる

    「(3)条件付き分散V[Y|X]を求め、全分散の公式が成り立つことを確認せよ。」を確認します。

    条件付き分散の計算

    V(Y|X)、E(V(Y|X))、V(E(Y|X))を計算していきます。

    ●V(Y|X)ですが、焦らず、分散公式を思い出します。
    V[X]=E[X2]-E[X]2
    でしたね。X⇒Y|Xに変えればOKです。でも、これでも代入しにくいので解いてみましょう。

    V(Y|X)= E[Y2|X]-E[Y|X]2
    です。X2⇒Y2|Xに注意します。
    実は、
    E[Y2|X]= \(\frac{2x+3}{6(x+1)}\)
    E[Y|X]= \(\frac{3x+4}{6(x+1)}\)
    とすでに計算済ですから、そのまま計算できます。よって
    V[Y|X]= \(\frac{2x+3}{6(x+1)}\)- \((\frac{3x+4}{6(x+1)})^2\)
    =\(\frac{6(x+1)(2x+3)-(3x+4)^2}{36(x+1)^2}\)
    =\(\frac{1}{36(x+1)^2} (3x^2+6x+2)\)
    とxの関数として出て来ました。

    ●次に全分散の公式への下ごしらえをします。

    ●E(V(Y|X))を計算します。V(Y|X)の期待値なんて、どうやって計算するか、難しそうです。しっかり見ていきます。xの関数なのでxで積分します。
    E(V(Y|X))= \(\int_0^2 V(Y|X) f_X(x)dx\)
    =\(\int_0^2 \frac{1}{36(x+1)^2} (3x^2+6x+2) \frac{1}{4}(x+1) dx\)
    =\(\frac{1}{144} \int_0^2 \frac{3x^2+6x+2}{x+1} dx \)
    =\(\frac{1}{144} \int_0^2 (3(x+1)-\frac{1}{x+1}) dx \)
    積分すると
    =\(\frac{1}{144}\left[ \frac{3}{2}(x+1)^2 -log|x+1| \right]_0^2\)
    =\(\frac{1}{144} (12-log3)\)
    となります。計算が合っているか、ちょっと心配になりますね。大丈夫です。どんどん突き進みましょう。

    ●V(E(Y|X))を計算します。E(Y|X)の分散なんて、どうやって計算するか、難しそうです。しっかり見ていきます。xの関数なのでxで積分します。
    V(E(Y|X))=E(E(Y|X)2)-E(E(Y|X)) 2
    =\(\int_0^2 \frac{(3x+4)^2}{36(x+1)^2} \frac{1}{4} (x+1)dx\)
    -\((\int_0^2 \frac{3x+4}{6(x+1)} \frac{1}{4} (x+1)dx)^2\)
    =\(\frac{1}{144 }\int_0^2 \frac{(3x+4)^2}{x+1} dx\) -\((\frac{1}{24} \int_0^2 (3x+4) dx)^2\)

    =\(\frac{1}{144}\int_0^2 (9(x+1)+6+\frac{1}{x+1}dx\) -\(\frac{1}{576}(\left[ \frac{3}{2}x^2 +4x \right]_0^2\)
    =\(\frac{1}{144}(36+12+log3 \) -\(\frac{196}{576}\)
    =\(\frac{1}{144}(-1+log3) \)
    となります。随分計算が大変でした。

    全分散の公式の確認

    2段サンプリングの分散導出に必須な全分散の公式

    V(Y)= V(E(Y|X))+ E(V(Y|X))
    を確認しましょう。

    ●V(Y)は関連記事ですでに計算済です。

    本記事では、2変数の確率分布関数(離散系&連続系)の期待値・分散をわかりやすく解説します。

    V(Y)=\(\frac{11}{144}\)ですね。

    ●全分散の公式の(右辺)を合算します。
    V(E(Y|X))+ E(V(Y|X))
    =\(\frac{1}{144}(-1+log3) \)+\(\frac{1}{144} (12-log3)\)
    =\(\frac{11}{144}\)
    =V(Y)
    と一致します。

    ●証明は別途、他の記事で解説しますが、連続型で全分散の公式が成り立つことを確認しました。

    重い例題でしたが、ちゃんと計算できました。教科書では、抽象的な公式導出ばかり書いていますが、実例で計算するのは意外と難しいので、何度も確認しましょう。

    まとめ

    条件付き期待値・条件付き分散がわかる(連続型)をわかりやすく解説しました。

    • ①【共通】2段サンプリングの分散公式を導出するために知っておくべき内容
    • ➁例題と条件付き確率
    • ➂条件付き期待値
    • ➃条件付き分散がわかる
  • 同時確率分布の分散、共分散の導出がわかる(離散系&連続系)

    同時確率分布の分散、共分散の導出がわかる(離散系&連続系)

    本記事のテーマ

    同時確率分布の分散、共分散の導出がわかる
    • ①【共通】2段サンプリングの分散公式を導出するために知っておくべき内容
    • ➁【何度も復習しよう!】離散型確率分布の場合
    • ➂【何度も復習しよう!】連続型確率分布の場合

    QC・統計に勝てるためのサンプリング問題集を販売します!

    QC検定®1級合格したい方、QCに必要なサンプリングをしっかり学びたい方におススメです。
    QC検定®1級、2級でサンプリングの問題で苦戦していませんか?本記事では、QC・統計に勝てるためのサンプリング問題集(20題)を紹介します。

    ①【共通】2段サンプリングの分散公式を導出するために知っておくべき内容

    2段サンプリングの分散の式

    「2段サンプリングの分散」の式があります。

    E(\(\bar{\bar{x}}\))=μ
    V(\(\bar{\bar{x}}\))=\(\frac{M-m}{M-1}・\frac{σ_b^2}{m}\)+\(\frac{N-n}{N-1}・\frac{σ_w^2}{mn}\)
    ・\(m\):1次サンプルの大きさ
    ・\(n\):2次サンプルの大きさ
    ・\(σ_b^2\):1次単位間の特性xの分散
    ・\(σ_w^2\):1次単位内の特性xの分散
    ・M:1次単位の総数
    ・N:1次単位の大きさ
    ・\(\frac{M-m}{M-1},\frac{N-n}{N-1}\):有限修正項
    となりますよね。

    でも、

    この式は何なの?
    何でこんな難しい式なの?
    覚えられない。。。

    と困ってしまいますよね。QCプラネッツも苦労しました。

    そこで、

    せめて、「2段サンプリングの分散」の式を導出したい!

    という思いで、解説していきます。

    2段サンプリングの分散の式に必要な内容

    まとめると、以下を理解しておく必要があります。

    1. 条件付き確率
    2. 2変数の確率分布関数(同時確率質量関数)
    3. 同時確率分布の分散、共分散の導出
    4. 条件付き確率の期待値・分散
    5. 全分散の公式の導出
    6. 2段サンプリングの分散の公式導出
    2段サンプリングは式が複雑!
    公式暗記・代入だけでは意味不明!
    サンプリングの分散はみんな苦手

    なので、1つ1つ解説します。

    今回は第3弾として「同時確率分布の分散、共分散の導出」を解説します。

    ➁【何度も復習しよう!】離散型確率分布の場合

    ●まず、わかりやすい「離散型」の場合で、数列∑を使った計算を解説します。

    例題

    ●2次元の確率変数(X,Y)が、下表のような分布を持っている。

    X/Y 1 2 3
    1 \(\frac{2}{8}\) \(\frac{1}{8}\) \(\frac{1}{8}\) \(\frac{1}{2}\)
    2 \(\frac{1}{8}\) \(\frac{1}{8}\) \(\frac{2}{8}\) \(\frac{1}{2}\)
    \(\frac{3}{8}\) \(\frac{2}{8}\) \(\frac{3}{8}\) 1

    (1)期待値E[X],E[Y],E[X+Y],E[XY]を求めよ。
    (2)分散V[X],V[Y],共分散COV[X,Y]を求めよ。

    期待値と分散のフルセットを計算してみましょう。

    解法に必要な公式集

    離散系の場合の期待値と分散の解法に慣れるために必要な公式集をまとめます。以下の式を使って、解いていきます。なお、連続系の場合は∑を∫に変えればOKです。

    期待値の公式

    ●E[X]=∑X・Pr(X)
    ●E[Y]=∑X・Pr(Y)
    ●E[X+Y]=∑(X+Y)・Pr(X+Y)
    ●E[XY]=∑XY・Pr(XY)

    分散の公式

    ●V[X]=E[\((X-μ_X)^2\)]
    ●V[Y]=E[\((Y-μ_Y)^2\)]
    ●COV[X,Y]=E[\((X-μ_X)(Y-μ_Y)\)]
    ●Cov[X,Y]= E[XY]- E[X]E[Y]

    解法(期待値)

    (1)期待値E[X],E[Y],E[X+Y],E[XY]を求めよ。

    では、解いていきましょう。

    E[X]の解法

    表から、X=1の確率が1/2、X=2の確率が1/2ですから期待値は、
    E[X]=1×1/2+2×1/2=3/2

    簡単ですね!

    E[Y]の解法

    表から、Y=1の確率が3/8、Y=2の確率が2/8、Y=3の確率が3/8ですから期待値は、
    E[Y]=1×3/8+2×2/8+3×3/8=2

    簡単ですね!

    E[X+Y]の解法

    X+Yの場合について下表を追加しましょう。

    X/Y 1 2 3
    1 X+Y=2 X+Y=3 X+Y=4
    \(\frac{2}{8}\) \(\frac{1}{8}\) \(\frac{1}{8}\)
    2 X+Y=3 X+Y=4 X+Y=5
    \(\frac{1}{8}\) \(\frac{1}{8}\) \(\frac{2}{8}\)

    表から、
    X+Y=2の確率が2/8、
    X+Y=3の確率が2/8、
    X+Y=4の確率が2/8、
    X+Y=5の確率が2/8
    ですから期待値は、
    E[X+Y]=2×2/8+3×2/8+4×2/8+5×2/8=3.5

    表を追加すれば簡単ですね!

    E[XY]の解法

    同様にXYの場合について下表を追加しましょう。

    X/Y 1 2 3
    1 XY=1 XY=2 XY=3
    \(\frac{2}{8}\) \(\frac{1}{8}\) \(\frac{1}{8}\)
    2 XY=2 XY=4 XY=6
    \(\frac{1}{8}\) \(\frac{1}{8}\) \(\frac{2}{8}\)

    表から、
    XY=1の確率が2/8、
    XY=2の確率が2/8、
    XY=3の確率が1/8、
    XY=4の確率が1/8、
    XY=6の確率が2/8
    ですから期待値は、
    E[XY]=1×2/8+2×2/8+3×1/8+4×1/8+6×2/8=25/8

    表を追加すれば簡単ですね!

    期待値をまとめると、
    E[X]=3/2、E[Y]=2、E[X+Y]=3.5、E[XY]=25/8
    となります。

    また、
    E[X+Y]= E[X]+ E[Y] は成り立ちますが、
    E[XY]= E[X] E[Y] は成り立ちません。
    X,Yは互いに独立ではないからですね。

    解法(分散)

    (2)分散V[X],V[Y],共分散COV[X,Y]を求めよ。

    V[X]の解法

    ●ここで、分散V[X]の式をおさえましょう。
    V[X]=E[\((X-μ_X)^2\)]
    ですね。

    次に、Xの平均\(μ_X\)を求めましょう。
    平均\(μ_X\)はX=1,2の平均ですから3/2ですね。

    表から、X=1の確率が1/2、X=2の確率が1/2ですから分散は、

    V[X]=E[\((X-μ_X)^2\)]=E[\((X-1.5)^2\)]
    =\((1-1.5)^2\)×1/2+\((2-1.5)^2\)×1/2
    =1/4

    ちょっと難しいですね。

    V[Y]の解法

    ●ここで、分散V[Y]の式をおさえましょう。
    V[Y]=E[\((Y-μ_Y)^2\)]
    ですね。

    次に、Yの平均\(μ_Y\)を求めましょう。
    平均\(μ_Y\)はY=1,2,3の平均ですから2ですね。

    表から、Y=1の確率が3/8、Y=2の確率が2/8、Y=3の確率が3/8ですから分散は、

    V[Y]=E[\((Y-μ_Y)^2\)]=E[\((Y-2)^2\)]
    =\((1-2)^2\)×3/8+\((2-2)^2\)×2/8+\((3-2)^2\)×3/8
    =3/4

    ちょっと難しいですね。

    共分散COV[X,Y]の解法

    ●ここで、共分散COV[X,Y]の式をおさえましょう。
    COV[X,Y]=E[\((X-μ_X)(Y-μ_Y)\)]
    ですね。

    共分散は、
    COV[X,Y]=E[\((X-μ_X)(Y-μ_Y)\)]= E[\((X-1.5)(Y-2)\)]
    =(1-1.5)(1-2)×2/8+(1-1.5)(2-2)×1/8+(1-1.5)(3-2)×1/8+
    (2-1.5)(1-2)×1/8+(2-1.5)(2-2)×1/8+(2-1.5)(3-2)×2/8
    =1/8

    なお、共分散Cov[X,Y]はもう1つ公式があり、
    Cov[X,Y]= E[XY]- E[X]E[Y]
    1/8=25/8-3/2・3
    が成り立ちます。

    ちょっと難しいですが、解き方は1パターンなので、何度も復習しましょう。

    分散をまとめると、
    V[X]=1/4、V[Y]=3/4、Cov[X,Y]=1/8
    となります。

    ➂【何度も復習しよう!】連続型確率分布の場合

    ●「連続型」の場合で、積分を使った計算を解説します。

    例題

    2次元の確率変数(X,Y)の同時確率密度関数が
    \(f(x,y)=\frac{1}{4}(x+2y)\) (0 ≤ \(x\) ≤ 2, 0 ≤ \(y\) ≤ 1)
    で表されている。
    (1)X,Yの周辺確率密度関数\(f_X(x)\), \(f_Y(y)\)を求めよ。
    (2)期待値E[X]、E[Y]、E[X+Y]、E[XY]を求めよ。
    (3)分散V[X]、V[Y]、共分散Cov[X,Y]を求めよ。

    本記事は、(2)(3)を解説します。

    解法に必要な公式集

    連続系の場合の期待値と分散の解法に慣れるために必要な公式集をまとめます。以下の式を使って、解いていきます。なお、離散系の場合は∫を∑に変えればOKです。

    期待値の公式

    ●E[X]=\(\int_0^2 xf_X(x)dx\)
    ●E[Y]=\(\int_0^1 yf_Y(y)dy\)

    ●E[X+Y]=E[X]+E[Y]
    または、
    ●E[X+Y]=\(\int_0^2 \int_0^1 (x+y)f(x,y)dydx\)

    ●E[XY]=\(\int_0^2 \int_0^1 xyf(x,y)dydx\)
    (E[XY]とE[X]E[Y]が一致しない場合もあるので注意!)

    分散の公式

    ●E[X2]=\(\int_0^2 x^2 f_X(x)dx\)
    ●E[Y2]=\(\int_0^1 y^2 f_Y(y)dy\)

    ●V[X]=E[X2]-E[X]2
    ●V[Y]=E[Y2]-E[Y]2

    ●Cov[X,Y]= E[XY]- E[X]E[Y]

    解法(期待値)

    (2)期待値E[X]、E[Y]、E[X+Y]、E[XY]を求めよ。

    では、解いていきましょう。

    E[X]の解法

    \(\begin{eqnarray}
    \int_0^2 xf_X(x) dx \\
    &= \frac{1}{4} \int_0^2 x(x+1) dx \\
    &= \frac{1}{4} \left[ \frac{x^3}{3}+\frac{x^2}{2} \right]_0^2 dx\\
    \end{eqnarray}\)
    =\(\frac{7}{6}\)
    となります。

    E[Y]の解法

    \(\begin{eqnarray}
    \int_0^1 yf_Y(y) dy \\
    &= \frac{1}{2} \int_0^1 y(1+2y) dy \\
    &= \frac{1}{2} \left[ \frac{y^2}{2}+\frac{2y^3}{3} \right]_0^1 dy\\
    \end{eqnarray}\)
    =\(\frac{7}{12}\)
    となります。

    E[X+Y]の解法

    E[X+Y]=E[X]+E[Y]=\(\frac{7}{4}\)

    この解法でもいいですが、せっかくなので積分からでも算出しましょう。

    \(\begin{eqnarray}
    \int_0^2 \int_0^1 (x+y)f(x,y)dydx \\
    &= \frac{1}{4} \int_0^2 \int_0^1 (x+y)(x+2y)dydx \\
    \end{eqnarray}\)
    =\(\frac{7}{4}\)
    となります。
    (途中経過は計算してみてください)

    積分の計算の詳細はここをご覧ください。

    E[XY]の解法

    \(\begin{eqnarray}
    \int_0^2 \int_0^1 xyf(x,y)dydx \\
    &= \frac{1}{4} \int_0^2 \int_0^1 xy(x+2y)dydx \\
    \end{eqnarray}\)
    =\(\frac{2}{3}\)
    となります。
    (途中経過は計算してみてください)

    積分の計算の詳細はここをご覧ください。

    期待値をまとめると、
    E[X]=7/6、E[Y]=7/12、E[X+Y]=7/4、E[XY]=2/3
    となります。

    また、
    E[X+Y]= E[X]+ E[Y] は成り立ちますが、
    E[XY]= E[X] E[Y] は成り立ちません。
    X,Yは互いに独立ではないからですね。

    解法(分散)

    (3)分散V[X]、V[Y]、共分散Cov[X,Y]を求めよ。

    V[X]の解法

    ●ここで、分散V[X]の式をおさえましょう。
    まず、E[X2]が必要です。

    \(\begin{eqnarray}
    \int_0^2 x^2 f_X(x) dx \\
    &= \frac{1}{4} \int_0^2 x^2 (x+1) dx \\
    &= \frac{1}{4} \left[ \frac{x^4}{4}+\frac{x^3}{3} \right]_0^2 dx\\
    \end{eqnarray}\)
    =\(\frac{5}{3}\)
    となります。

    よって、
    V[X]=E[X2]-E[X]2
    =\(\frac{5}{3}\)-\((\frac{7}{6})^2\)
    =11/36

    V[Y]の解法

    ●ここで、分散V[Y]の式をおさえましょう。
    まず、E[Y2]が必要です。

    \(\begin{eqnarray}
    \int_0^1 y^2 f_Y(y) dy \\
    &= \frac{1}{2} \int_0^1 y^2 (1+2y) dy \\
    &= \frac{1}{2} \left[ \frac{y^3}{3}+\frac{y^4}{2} \right]_0^1 dy\\
    \end{eqnarray}\)
    =\(\frac{5}{12}\)
    となります。

    よって、
    V[Y]=E[Y2]-E[Y]2
    =\(\frac{5}{12}\)-\((\frac{7}{12})^2\)
    =11/144

    共分散COV[X,Y]の解法

    ●ここで、共分散COV[X,Y]の式をおさえましょう。
    COV[X,Y]=E[XY]-E[X]E[Y]
    =\(\frac{2}{3}\)-\(\frac{7}{6}\)・\(\frac{7}{12}\)
    =\(\frac{-1}{72}\)

    ちょっと難しいですが、解き方は1パターンなので、何度も復習しましょう。

    積分の計算の詳細はここをご覧ください。

    分散をまとめると、
    V[X]=11/36、V[Y]=11/144、Cov[X,Y]=-1/72
    となります。

    連続系は、ひたすら積分すればOKです。

    まとめ

    同時確率分布の分散、共分散の導出をわかりやすく解説しました。

    • ①【共通】2段サンプリングの分散公式を導出するために知っておくべき内容
    • ➁【何度も復習しよう!】離散型確率分布の場合
    • ➂【何度も復習しよう!】連続型確率分布の場合
  • 【必読】有限母集団の修正項の導出ができる

    【必読】有限母集団の修正項の導出ができる

    本記事のテーマ

    【必読】有限母集団の修正項の導出ができる
    • ①有限母集団からのランダムサンプリング
    • ②有限母集団の標本平均の導出
    • ③修正項の導出に必要な数式
    • ④有限母集団の標本分散の修正項への導出
    「有限母集団の修正項\(\frac{N-n}{N-1}\)」
    ●E[\(\bar{x}\)]=μ
    ●V(\(\bar{x}\))=\(\frac{N-n}{N-1}\)\(\frac{σ}{n}\)
    を丁寧に導出します。

    QC・統計に勝てるためのサンプリング問題集を販売します!

    QC検定®1級合格したい方、QCに必要なサンプリングをしっかり学びたい方におススメです。
    QC検定®1級、2級でサンプリングの問題で苦戦していませんか?本記事では、QC・統計に勝てるためのサンプリング問題集(20題)を紹介します。

    ①有限母集団からのランダムサンプリング

    下図のように、データ数N、平均μ、分散\(σ^2\)の有限母集団から、n個のデータをランダムサンプリングします。

    サンプリング

    n個のデータの平均ではない、標本平均の期待値E[\(\bar{x}\)]と、
    分散ではない、標本分散の期待値V(\(\bar{x}\))を導出します。

    ②有限母集団の標本平均の導出

    導出します。

    E[\(\bar{x}\)]=E[\(\frac{1}{n}\)\(\sum_{i=1}^{n}x_i\)]
    =\(\frac{1}{n}\)E[\(\sum_{i=1}^{n}x_i\)]
    =\(\frac{1}{n}\){E[\(x_1+x_2+…+x_n\)]}
    =\(\frac{1}{n}\){E[\(x_1\)]+ E[\(x_2\)]+…+ E[\(x_n\)]}
    =\(\frac{1}{n}\){μ+μ+…+μ}
    =\(\frac{nμ}{n}\)

    なお、すべてのiについて、
    E[\(x_i\)]=μ
    を使いました。

    ●E[\(\bar{x}\)]=μ
    と有限母集団の平均μと一致しました。

    ②修正項の導出に必要な数式

    次に標本分散V(\(\bar{x}\))を導出しますが、導出過程に必要な式があります。先に紹介して導出しておきましょう。

    【数式その1】
    \((\sum_{i=1}^{n}x_i)^2\)=\(\sum_{i=1}^{n}x_i ^2\)+\(\sum_{i=1}^{n}\sum_{j=1(i≠j)}^{n}x_i x_j\)
    同様にnをNに、xをXに変えて
    \((\sum_{i=1}^{N}X_i)^2\)=\(\sum_{i=1}^{N}X_i ^2\)+\(\sum_{i=1}^{N}\sum_{j=1(i≠j)}^{N}X_i X_j\)

    「なんじゃこりゃ!」という式ですが、展開すれば成立します。あとで導出しますね。

    【数式その2】
    \(\frac{1}{n}\)E[\(\sum_{i=1}^{n}x_i ^2\)]=\(\frac{1}{N}\)E[\(\sum_{i=1}^{N}X_i ^2\)]
    \(\frac{1}{_{n}C_2}\)E[\(\sum_{i=1}^{n}\sum_{j=1(i≠j)}^{n}x_i x_j\)]= \(\frac{1}{_{N}C_2}\)E[\(\sum_{i=1}^{N}\sum_{j=1(i≠j)}^{n}X_i X_j\)]

    【数式その1】の導出

    実際に展開しましょう。

    \((\sum_{i=1}^{n}x_i)^2\)
    =\((x_1+x_2+…+x_n)^2\)
    =(あ)

    和の2乗の展開は、
    自身の2乗と、互いの積の和ですね。これは高校1年数学レベルです。

    (あ)式は
    (あ)=(\(x_1^2+x_2^2+…+x_n^2\) (2乗和)
    +\(x_1( なし+x_2+x_3+…+x_{n-1}+x_n)\) (互いの積)
    +\(x_2(x_1+なし+x_3+…+x_{n-1}+x_n)\) (互いの積)

    +\(x_{n-1}(x_1+x_2+x_3+…+x_{n-2}+なし+x_n)\) (互いの積)
    +\(x_n (x_1+x_2+x_3+…+x_{n-2}+x_{n-1}+なし)\) (互いの積)
    =(い)

    (あ)式の「互いの積」項にある「なし」は2乗和の項に入れたため、ありません。「ない」ことを明確にするために「なし」と入れました。

    (い)式をまとめましょう。

    2乗和は簡単で
    (\(x_1^2+x_2^2+…+x_n^2\)=\(\sum_{i=1}^{n} x_i^2\)
    ですね。

    互いの積は、それぞれの組み合わせの積だけど、自分自身同士の積はないので、
    \(x_1( なし+x_2+x_3+…+x_{n-1}+x_n)\) (互いの積)
    +\(x_2(x_1+なし+x_3+…+x_{n-1}+x_n)\) (互いの積)

    +\(x_{n-1}(x_1+x_2+x_3+…+x_{n-2}+なし+x_n)\) (互いの積)
    +\(x_n (x_1+x_2+x_3+…+x_{n-2}+x_{n-1}+なし)\) (互いの積)
    =\(\sum_{i=1}^{n}\sum_{j=1(i≠j)}^{n}x_i x_j\)
    とまとめることができます。

    【数式その1】
    \((\sum_{i=1}^{n}x_i)^2\)=\(\sum_{i=1}^{n}x_i ^2\)+\(\sum_{i=1}^{n}\sum_{j=1(i≠j)}^{n}x_i x_j\)

    できましたね。

    【数式その2】の導出

    【数式その2】
    \(\frac{1}{n}\)E[\(\sum_{i=1}^{n}x_i ^2\)]=\(\frac{1}{N}\)E[\(\sum_{i=1}^{N}X_i ^2\)]

    期待値Eを使って、ズルく導出します。数式よりは論理で両辺を等号に持ち込みます。

    もともとデータ\( X_i \)も\( x_i \)も同じ集合におり、平均、分散も同じですね。だとしたら、
    期待値E[\( X_i \)]= E[\( x_i \)]と
    期待値E[\( X_i^2 \)]= E[\( x_i^2 \)]と
    してもよいですね。期待値だから、似たデータなら期待値は同じ。ちょっと強引ですか?

    あとは、個数の平均を考えればOK。よって、

    【数式その2】
    \(\frac{1}{n}\)E[\(\sum_{i=1}^{n}x_i ^2\)]=\(\frac{1}{N}\)E[\(\sum_{i=1}^{N}X_i ^2\)]

    数学的には正しいけど、ちょっと強引ですね。

    同様に、

    【数式その2】
    \(\frac{1}{_{n}C_2}\)E[\(\sum_{i=1}^{n}\sum_{j=1(i≠j)}^{n}x_i x_j\)]= \(\frac{1}{_{N}C_2}\)E[\(\sum_{i=1}^{N}\sum_{j=1(i≠j)}^{n}X_i X_j\)]

    以上、下ごしらえは終わりです。では、標本分散を導出しましょう。

    ③有限母集団の標本分散の修正項への導出

    標本分散V(\(\bar{x}\))の式

    分散の公式は、

    V(\(\bar{x}\))=E[\(\bar{x^2}\)]-E[\(\bar{x}\)]2

    E[\(\bar{x}\)]はすでに、E[\(\bar{x}\)]=μとわかっています。

    E[\(\bar{x^2}\)]を導出します。分散はいつもE[\(x^2\)]の導出が難しいですよね。

    期待値E[\(\bar{x^2}\)]の導出

    E[\(\bar{x^2}\)]=E[\((\frac{1}{n}\sum_{i=1}^{n}x_i)^2\)]
    =\(\frac{1}{n^2}\)E[\((\sum_{i=1}^{n}x_i)^2\)]
    =(ア)

    (ア)の式で、\((\sum_{i=1}^{n}x_i)^2\)は、【数式その1】そのものですね。使いましょう。

    (ア)= \(\frac{1}{n^2}\)E[\(\sum_{i=1}^{n}x_i ^2\)+\(\sum_{i=1}^{n}\sum_{j=1(i≠j)}^{n}x_i x_j\)]
    =\(\frac{1}{n^2}\)E[\(\sum_{i=1}^{n}x_i ^2\)]+\(\frac{1}{n^2}\)E[\(\sum_{i=1}^{n}\sum_{j=1(i≠j)}^{n}x_i x_j\)]
    =(イ)

    次に、【数式その2】を使って\(x_i\)から\(X_i\)の式に変換します。
    E[\(\sum_{i=1}^{n}x_i ^2\)]=\(\frac{n}{N}\)E[\(\sum_{i=1}^{N}X_i ^2\)]
    E[\(\sum_{i=1}^{n}\sum_{j=1(i≠j)}^{n}x_i x_j\)]= \(\frac{_{n}C_2}{_{N}C_2}\)E[\(\sum_{i=1}^{N}\sum_{j=1(i≠j)}^{n}X_i X_j\)]

    (イ)
    =\(\frac{1}{n^2}\)E[\(\sum_{i=1}^{n}x_i ^2\)]+\(\frac{1}{n^2}\)E[\(\sum_{i=1}^{n}\sum_{j=1(i≠j)}^{n}x_i x_j\)]
    =\(\frac{1}{n^2}\)\(\frac{n}{N}\)E[\(\sum_{i=1}^{N}X_i ^2\)]+\(\frac{1}{n^2}\)\(\frac{_{n}C_2}{_{N}C_2}\)E[\(\sum_{i=1}^{N}\sum_{j=1(i≠j)}^{n}X_i X_j\)]
    =(ウ)

    整理すると、
    (ウ)
    =\(\frac{1}{nN}\)E[\(\sum_{i=1}^{N}X_i ^2\)]+\(\frac{1}{n^2}\)\(\frac{n(n-1)}{N(N-1)}\)E[\(\sum_{i=1}^{N}\sum_{j=1(i≠j)}^{n}X_i X_j\)]
    =(エ)

    ここで、\(X_i\)は母集団のデータなので、期待値Eが外せます。つまり、
    E[\(\sum_{i=1}^{N}X_i ^2\)]=\(\sum_{i=1}^{N}X_i ^2\)
    E[\(\sum_{i=1}^{N}\sum_{j=1(i≠j)}^{n}X_i X_j\)]=\(\sum_{i=1}^{N}\sum_{j=1(i≠j)}^{n}X_i X_j\)
    です。なお、サンプリングした方の\(x_i\)は期待値Eが外せません。

    (エ)
    =\(\frac{1}{nN}\)\(\sum_{i=1}^{N}X_i^2\)+\(\frac{1}{n^2}\)\(\frac{n(n-1)}{N(N-1)}\)\(\sum_{i=1}^{N}\sum_{j=1(i≠j)}^{n}X_i X_j\)
    =(オ)

    次に、よくわからない式、\(\sum_{j=1(i≠j)}^{n}X_i X_j\)を別の式に書き換えましょう。

    ここで、よく考えると、
    \(\frac{1}{N}\sum_{i=1}^{N}X_i\)=μより、
    ●\(\sum_{i=1}^{N}X_i\)=Nμ
    ●\((\sum_{i=1}^{N}X_i)^2\)=\((Nμ)^2\)
    が成り立ちますね。

    【数式その1】を見ると、

    【数式その1】
    \((\sum_{i=1}^{N}X_i)^2\)=\(\sum_{i=1}^{N}X_i ^2\)+\(\sum_{i=1}^{N}\sum_{j=1(i≠j)}^{N}X_i X_j\)

    つまり、
    \((\sum_{i=1}^{N}X_i)^2\)=\(\sum_{i=1}^{N}X_i ^2\)+\(\sum_{i=1}^{N}\sum_{j=1(i≠j)}^{N}X_i X_j\)=\((Nμ)^2\)
    が成り立ちます。式変形すると、
    \(\sum_{i=1}^{N}\sum_{j=1(i≠j)}^{N}X_i X_j\)=\((Nμ)^2\)-\(\sum_{i=1}^{N}X_i ^2\)
    =(カ)
    が成り立ちます。

    ちょっと前の(オ)式に(カ)式を代入します。

    (オ)
    =\(\frac{1}{nN}\)\(\sum_{i=1}^{N}X_i^2\)+\(\frac{1}{n^2}\)\(\frac{n(n-1)}{N(N-1)}\)\(\sum_{i=1}^{N}\sum_{j=1(i≠j)}^{n}X_i X_j\)
    =\(\frac{1}{nN}\)\(\sum_{i=1}^{N}X_i^2\)+\(\frac{1}{n^2}\)\(\frac{n(n-1)}{N(N-1)}\)[\((Nμ)^2\)-\(\sum_{i=1}^{N}X_i ^2\)]
    =(キ)

    (キ)式はμと\(\sum_{i=1}^{N}X_i ^2\)について式変形しましょう。その結果は

    (キ)
    =E[\(\bar{x^2}\)]
    =\(\frac{1}{nN}\)\(\frac{N-n}{N-1}\)\(\sum_{i=1}^{N}X_i^2\)+\(\frac{N(n-1)}{n(N-1)}\)\(μ^2\)
    となります。長かったですね。もうちょっとで完成です。

    標本分散の修正項への導出

    標本分散V(\(\bar{x}\))の式は

    V(\(\bar{x}\))=E[\(\bar{x^2}\)]-E[\(\bar{x}\)]2

    代入しましょう。
    V(\(\bar{x}\))=\(\frac{1}{nN}\)\(\frac{N-n}{N-1}\)\(\sum_{i=1}^{N}X_i^2\)+\(\frac{N(n-1)}{n(N-1)}\)\(μ^2\)-\(μ^2\)
    =(ク)

    (ク)式をまとめると
    (ク)=\(\frac{N-n}{N-1}\)[\(\frac{1}{N}\sum_{i=1}^{N}X_i^2\)-\(μ^2\)]\(\frac{1}{n}\)
    =(ケ)

    (ケ)式の中の、[\(\frac{1}{N}\sum_{i=1}^{N}X_i^2\)-\(μ^2\)]はよく見ると、
    [\(\frac{1}{N}\sum_{i=1}^{N}X_i^2\)-\(μ^2\)]=E[x2]-E[x]2
    =\(σ^2\)
    ですから、まとめると、

    (ケ)つまり、標本分散V(\(\bar{x}\))は
    V(\(\bar{x}\))=\(\frac{N-n}{N-1}\)\(\frac{σ^2}{n}\)

    無限母集団の標本分散は\(\frac{σ^2}{n}\)ですから、修正項は、

    修正項は、\(\frac{N-n}{N-1}\)

    できましたね。お疲れさまでした。

    まとめ

    有限母集団の修正項の導出をわかりやすく解説しました。

    • ①有限母集団からのランダムサンプリング
    • ②有限母集団の標本平均の導出
    • ③修正項の導出に必要な数式
    • ④有限母集団の標本分散の修正項への導出
  • error: Content is protected !!