【必読】検定と推定を解く【QC検定®2級対策】
「QC検定®2級合格に必要な検定と推定の解法パターンがうまく整理できない」、「どう解けばいいの?」など、試験に合格できるかどうか悩んでいませんか?
こういう疑問に答えます。
本記事のテーマ
検定と推定の解き方
- ➀QC検定®2級で出題される検定と推定は11種類
- ②検定と推定の解法は1つだけ
記事の信頼性
記事を書いている私は、実験計画法を全く知らない状態から3ヶ月にQC検定®2級を合格し、さらに、QC検定®1級合格して、さらに実験計画法に磨きをかけています。
なお、QC検定®2級合格対策本や参考書は1冊までにしてください。
たくさん本を持っている人ほど、合格しません。
合格する方法が重要で、対策本や参考書にはその方法が書いていません。
品質管理・統計の初心者にとって分厚い本はキツイです。
QC模試受験しよう!
QC模試(品質技量の腕試し&QC検定®対策) 品質技量の実力を試したい! QC検定®合格対策に活用したい! 1,000円で提供します! 公式、暗記で終わらず、自分のものにできているかを試すオリジナル試験問題です! |
品質力が鍛えられる「QC塾」を是非ご利用ください。
【2022/4/22up!】QC塾(有料)開設します! ブログでは、品質の勉強、実務、QC検定®に役立つ情報をアップして 「わかる」価値を提供していますが、「わかる」を「できる」に変える トレーニング塾「QC塾」を是非ご利用ください。 難解な品質が、すっきりわかり、指導できるレベルまで上達できます! |
①QC検定®と品質管理検定®は、一般財団法人日本規格協会の登録商標です。
➁このコンテンツは、一般財団法人日本規格協会の承認や推奨、その他の検討を受けたものではありません。
➂QCプラネッツは、QC検定®と品質管理検定®の商標使用許可を受けています。
●リンクページ
➀QC検定®2級で出題される検定と推定は11種類
11種類もありますが、解き方はすべて同じ方法で解けます。(A)~(F)の6パターンにさらに分類できます。QCプラネッツではそれぞれのパターンについて個別の記事で解説しています。
- (A-1)平均値に関する検定(\(σ_e^2\)既知)
- (A-1)平均値に関する検定(\(σ_e^2\)未知)
- (B-1)母平均差に関する検定(2つの分散が同じ)
- (B-2)母平均差に関する検定(2つの分散が異なる)
- (C-1)分散値に関する検定(分散が変化したか)
- (C-2)分散値に関する検定(2変数の分散値の同異)
- (D-1)二項分布に関する検定(1つの母不適合品率)
- (D-2)二項分布に関する検定(2つの母不適合品率)
- (E-1)ポアソン分布に関する検定(1つの母不適合数)
- (E-2)ポアソン分布に関する検定(2つの母不適合数)
- (F)分割表による検定
(A),(B),(C),(D),(E),(F)の6パターンに分けて、2つずつ解法パターンをおさえていきましょう。
●You tube動画もあります。ご確認ください。
クイズどうぞ!いい演習になります!
(A)平均値に関する検定に関する関連記事
【1】平均値に関する検定と推定【QC検定®2級対策】 QC検定®2級で頻出な、平均値に関する検定と推定の解法を解説します。検定から推定区間まで5分以内に解けるための流れとテクニックについて解説します。QC検定®2級合格したい方は必見です。 |
(B)母平均差に関する検定に関する関連記事
【2】母平均差に関する検定と推定【QC検定®2級対策】 QC検定®2級で頻出な、母平均差に関する検定と推定の解法(ウェルチの方法)を解説します。検定から推定区間まで5分以内に解けるための流れとテクニックについて解説します。QC検定®2級合格したい方は必見です。 |
(C)分散値に関する検定に関する関連記事
【3】分散値に関する検定と推定【QC検定®2級対策】 QC検定®2級で頻出な、分散に関する検定と推定の解法を解説します。検定から推定区間まで5分以内に解けるための流れとテクニックについて解説します。QC検定®2級合格したい方は必見です |
(D)二項分布に関する検定に関する関連記事
【4】二項分布に関する検定と推定【QC検定®2級対策】 QC検定®2級で頻出な、二項定理に関する検定と推定の解法を解説します。検定から推定区間まで5分以内に解けるための流れとテクニックについて解説します。QC検定®2級合格したい方は必見です。 |
(E)ポアソン分布に関する検定に関する関連記事
【5】ポアソン分布に関する検定と推定【QC検定®2級対策】 QC検定®2級で頻出な、ポアソン分布に関する検定と推定の解法を解説します。検定から推定区間まで5分以内に解けるための流れとテクニックについて解説します。QC検定®2級合格したい方は必見です。 |
(F)分割表による検定に関する関連記事
【6】分割表(χ2乗分布)に関する検定【QC検定®2級対策】 QC検定®2級で頻出な、分割表に関する検定と推定の解法を解説します。検定から推定区間まで5分以内に解けるための流れとテクニックについて解説します。QC検定®2級合格したい方は必見です。 |
②検定と推定の解法は1つだけ
11種類の解法の共通
次のパターンの流れで解いていきます。QC検定®2級は11種類、QC検定®1級はもっと種類がありますが、下の6つの流れで解いていきます。
- 仮説を立てる(帰無仮説と対立仮説)
- 有意水準α(α=5%がほとんど)
- 検定統計量を設定
- 検定し有意性を判定
- 点推定の計算
- (100-α)%の推定区間を計算
1.帰無仮説と対立仮説を立てる
帰無仮説は、「無に帰す」なので、変化しない場合とします。
一方、対立仮説はその逆で、変化する場合とします。
よって、
帰無仮説H0: 〇=□
対立仮説H1: 〇≠□ (両側検定)
対立仮説H1: 〇 “<”または”>”□ (片側検定)
とします。
これはどんな、検定でも共通に設定する仮説です。
有意水準αの設定
数字の根拠はありませんが、α=5%,1%がよく使われます。試験ではこれでよいですが、実務ではαをいくらにするかは、考える必要があります。
片側検定なら、片側α%とする
両側検定の方が片側検定より厳しく検定します。正規分布でα=5%の場合、
両側検定:z=1.96 (α=2.5%)
片側検定:z=1.645(α=5%)
zの値は、「両側>片側」です。
3.検定統計量の式を作る
②次に解法を暗記
③QC検定®2級に合格
④余裕があったら式の意味などを勉強する
公式の成り立ちや理論を勉強してから試験にのぞもうとすると、勉強開始してすぐに挫折します。理論は難しいです。まずは解き方を覚えて解けることからです。
スポーツと同じで、まずはスポーツができることをとってから、理論を勉強するのと同じです。
4.検定の有意性を判定
検定統計量から算出した値と、有意水準で設定した値の大小で判断しましょう。
5.点推定の計算
単に平均をとるだけです。
6.(100-α)%の推定区間を計算
μ± t(φ、α)\(\sqrt{V_e/n_e}\)
などの公式と、φ、t(φ、α)、Ve、neの値が正確に計算できるかを求められます。
慣れるまで大変ですが、統計の基礎です。何度も練習しましょう。
解法を確実におさえて、5分以内に全問正解しましょう。スピードは練習量で上がります。頭でわかっているから大丈夫な人は試験では時間内に解けません。確実に解けるように何度も繰り返して練習です。
他の検定と推定の解き方も式が違うだけで解法は同じです。確実に習得しましょう。
まとめ
QC検定®2級で、分割表に関する検定と推定の解法を解説しました。
10問を1回ずつ解くのではなく、1問を10回解いて解法を覚えてしまいましょう。
試験本番に緊張した状態でも解けるよう何度も練習しましょう。
- ➀QC検定®2級で出題される検定と推定は11種類
- ②検定と推定の解法は1つだけ
Warning: count(): Parameter must be an array or an object that implements Countable in /home/qcplanets/qcplanets.com/public_html/wp-content/themes/m_theme/sns.php on line 119