投稿者: QCプラネッツ

  • ガンマ関数がよくわかる(その2_大学数学編)

    ガンマ関数がよくわかる(その2_大学数学編)

    「ガンマ関数がわからない!」、「ガンマ関数の導出方法や性質を数式で解けない!」と困っていませんか?

    こういう疑問に答えます。

    本記事のテーマ

    ガンマ関数がよくわかる(その2_大学数学編)
    • ①ガンマ関数とは
    • ➁ガンマ関数が分からないなら高校数学を復習しよう!
    • ➂ガンマ関数の性質
    • ➃ガンマ関数の性質の証明
    • ➄ガンマ関数とベータ関数の関係
    高校数学で十分わかる!
    高校数学でしっかり復習してから、
    大人の数学ガンマ関数に挑もう!
    ●大学入試受験生は必読だし、
    ●数十年前に受験生だった人も復習しましょう!
    [themoneytizer id=”105233-2″]

    QCに必要な数学問題集をを販売します!

    QC検定®1級合格したい方、QCに必要な数学をしっかり学びたい方におススメです。
    QC検定®1級、2級、統計検定2級以上の数学スキルを磨くのに苦戦していませんか? 広大すぎる統計学、微分積分からQC・統計に勝てるための60題に厳選した問題集を紹介します。是非ご購入いただき、勉強してスキルを高めましょう。

    ①ガンマ関数とは

    ガンマ関数の式だけ紹介

    こんな式ですね。ビビる必要はありません!

    \(Γ(s)= \displaystyle \int_{0}^{∞} x^{s-1}e^{-x} dx\)=\((s-1)!\)

    なんじゃこりゃ!ですが、大丈夫です!

    変な式なのに、なぜか階乗の式が答えとして出て来ます。

    ➁ガンマ関数が分からないなら高校数学を復習しよう!

    必ず、復習しておさえておきたいのが、3つ

    1. 数学的帰納法
    2. \( \displaystyle \lim_{x \to \infty} x e^{-x} = 0\)
    3. 部分積分から漸化式を作る流れ

    さっと解けますか? 不安なら、関連記事でしっかり復習できますし、大学入試にも役立つ3問があります。

    ガンマ関数がよくわかる(その1_高校数学復習編)
    ガンマ関数は使いこなせますか?いきなり大学の統計学とか学んで撃沈していませんか?本記事では、高校数学や大学受験問題に頻出な問題からガンマ関数の練習をします。ガンマ関数が分からない人は、必読です。

    次の3問がさらっと解けますか? 難関大学の問題ですが、ガンマ関数の基礎が学べる良問です。関連記事で解説つきです。

    \(n\)を自然数とする。
    (1) 関数\(f(x)\) = \(x^{n+1}e^{-x}\)の\(x\) ≥0 における最大値を求めよ。
    (2) 極限\( \displaystyle \lim_{x \to \infty} x^n e^{-x} \)を求めよ。
    (3) すべての自然数\(n\)に対して\( \displaystyle \lim_{x \to \infty} \displaystyle \int_{0}^{x} t^n e^{-t}dt \)=\(n!\)を示せ。
    (2015 弘前大)
    問1 \(n\)を正の整数とする。\(t\) ≥ 0 のとき、不等式\(e^t\) > \(\frac{t^n}{n!}\)を数学的帰納法を用いて示せ。
    問2 極限\(I_m\)=\(\displaystyle \lim_{t \to \infty}\displaystyle \int_{0}^{t} x^m e^{-x}dx\) \(m=0,1,2,…)\)を求めよ。
    (2001 東北大)
    \(a\)を正の定数とする。自然数\(n\)に対して、関数\(I_n(t)\)を
    \(I_n(t)\)= \(\displaystyle \int_{0}^{t} x^n e^{-ax}dx\)と定める。(2008 大阪府大 改)
    (1) \(e^{ax}\)=\(\sum_{k=0}^{∞} \frac{a^k}{k!} x^k \)と近似できることを用いて、
    \(\displaystyle \lim_{t \to \infty} t^n e^{-at}\)=0を示せ。
    (2) \(I_1(t)\)を求めよ。
    (3) \(I_{n+1}(t)\)と\(I_n(t)\)の関係式を求めよ。
    (4) \(J_n\)=\(\displaystyle \lim_{t \to \infty} I_n (t) \)とするとき、\(J_n\)を求めよ。

    下準備をした上で、本題に入ります。

    ➂ガンマ関数の性質

    ガンマ関数をざっくり理解する

    基本は、

    \(Γ(s)= \displaystyle \int_{0}^{∞} x^{s-1}e^{-x} dx\)=\((s-1)!\)
    と1つ少ない階乗と思えばOK

    ガンマ関数の性質

    大事な性質が3つあります。正規分布の積分にもつながる大事な内容です。

    1. (i) \(s\) > 1のとき、\(Γ(s)\)=\((s-1)Γ(s-1)\)
    2. (ii) \(s\)が正の整数のとき、\(Γ(s)\)=\((s-1)!\)
    3. (iii)\(Γ(\frac{1}{2})\)=\(\sqrt{π}\)

    (i)と(ii)は階乗の関係だから、すぐ理解できますが、(iii)は別格に難しく感じます。そもそも階乗は整数なのに\(\frac{1}{2}\)が入っているし、しかも、\(\sqrt{π}\)ってどこから来たん?って感じですよね!

    ➃ガンマ関数の性質の証明

    ガンマ関数に慣れるために証明も入れておきます。なぞってください。良い練習になります!

    (i) \(s\) > 1のとき、\(Γ(s)\)=\((s-1)Γ(s-1)\)

    ●\(Γ(s)= \displaystyle \int_{0}^{∞} x^{s-1}e^{-x} dx\)
    ●\(Γ(s-1)= \displaystyle \int_{0}^{∞} x^{s-2}e^{-x} dx\)
    です。

    部分積分しましょう。⇒が微分する方向として、
    \(-x^{s-1} e^{-x}\)⇒\(x^{s-1} e^{-x} –(s-1)x^{s-2} e^{-x}\)
    つまり、
    \(\left[-x^{s-1} e^{-x} \right]_{0}^{∞}\)=\(\displaystyle \int_{0}^{∞} x^{s-1} e^{-x} dx\)―\(\displaystyle \int_{0}^{∞} (s-1)x^{s-2} e^{-x} dx\)

    まとめると、
    \(\left[-x^{s-1} e^{-x} \right]_{0}^{∞}\)=\(Γ(s)\)―\((s-1)Γ(s-1)\)
    一方、(左辺)=0なので、
    \(Γ(s)\)=\((s-1)Γ(s-1)\)が成り立つ。

    関連記事でも部分積分をいっぱい練習していますので、不安なら関連記事で復習しましょう。

    (ii) \(s\)が正の整数のとき、\(Γ(s)\)=\((s-1)!\)

    これは簡単ですね。

    \(Γ(s)\) = \((s-1)Γ(s-1)\)= \((s-1)(s-2)Γ(s-2)\)=…
    = \((s-1)(s-2)…1Γ(1)\)

    ここで、Γ(1)は
    \(Γ(s)= \displaystyle \int_{0}^{∞} x^{1-1}e^{-x} dx\)
    =\(\displaystyle \int_{0}^{∞} e^{-x} dx\)
    =\(\left[-e^{-x} \right]_{0}^{∞}\)
    =1

    よって、
    \(Γ(s)\) =\((s-1)(s-2)…1・1\)=\((s-1)!\)

    (iii)\(Γ(\frac{1}{2})\)=\(\sqrt{π}\)

    実は、ベータ関数との関係式が必要なので、あとで解説します。

    ➄ガンマ関数とベータ関数の関係

    ガンマ関数とベータ関数の関係式が重要です。

    複雑なガンマ関数が式に並ぶと、ベータ関数に置き換えて式をシンプルにできないかどうかをよく変形します。χ2乗分布やF分布の確率密度関数がその良い事例です。

    ベータ関数とは

    これも関連記事で解説しています。復習しましょう。

    ベータ関数がよくわかる
    ベータ関数は自力で解けますか?本記事ではベータ関数の導出方法や性質、ガンマ関数との関係をわかりやすく解説します。大学の数学のような難解な説明は一切していません。、大学受験で頻出問題となるベータ関数は受験でも統計学でも重要です。受験生と統計学を学ぶ人は必読です。

    ポイントは、

    \(B(p,q)= \displaystyle \int_{0}^{1} x^{p-1}(1-x)^{q-1} dx\)
    =\(\frac{(p-1)!(q-1)!}{(p+q-1)!}\)

    関連記事でも解説しているとおり、次の式が成り立ちます。

    \(B(p,q)=\frac{Γ(p)Γ(q)}{Γ(p+q)} \)

    証明

    関連記事では、階乗!に注目して証明しています。
    \(B(p,q)\)=\(\frac{(p-1)!(q-1)!}{(p+q-1)!}\)
    \(Γ(p)=(p-1)!\)、\(Γ(q)=(q-1)!\)、\(Γ(p+q)=(p+q-1)!\)より
    \(B(p,q)\)=\(\frac{(p-1)!(q-1)!}{(p+q-1)!}\)= \(\frac{Γ(p)Γ(q)}{Γ(p+q)} \)と
    階乗「!」でみていけば公式が成り立つのが、わかりますね。

    教科書は別の2重積分から変数変換して証明する方法が書いていますが、難しすぎです。簡単でもいいからできる解法で理解すればOKです。

    ただし、上の簡略化した証明は、p,qが整数の場合については証明できますが、実数の場合までは証明していません。実数の場合も証明が必要でしたら、教科書を読み進めてください。

    以下、勝手ですが、p,qが実数の場合でも使えるとして進めます。

    Γ関数の性質(iii)\(Γ(\frac{1}{2})\)=\(\sqrt{π}\)

    ではやってみましょう。

    \(B(p,q)\)= \(\frac{Γ(p)Γ(q)}{Γ(p+q)} \)
    に\(p=\frac{1}{2}\)、\(q=\frac{1}{2}\)を代入します。

    \(B(\frac{1}{2},\frac{1}{2})\)= \(\frac{Γ(\frac{1}{2})Γ(\frac{1}{2})}{Γ(\frac{1}{2}+\frac{1}{2})} \)
    ここで、\(Γ(\frac{1}{2}+\frac{1}{2})\)=\(Γ(1)\)=1です。

    また、\(B(\frac{1}{2},\frac{1}{2})\)は、
    \(B(\frac{1}{2},\frac{1}{2})= \displaystyle \int_{0}^{1} x^{\frac{1}{2}-1}(1-x)^{ \frac{1}{2}-1} dx\)
    =\(\displaystyle \int_{0}^{1}\frac{1}{\sqrt{x(1-x)}}dx\)
    =\(\displaystyle \int_{0}^{1}\frac{1}{\sqrt{(\frac{1}{2})^2-(x-\frac{1}{2})^2}}dx\) (平方完成)
    =(式1)

    ここで、 \(tx-\frac{1}{2}\)とおくと、
    ●\(x\):0⇒1が、\(t\):\(-\frac{1}{2}\)⇒\(\frac{1}{2}\)へ
    ●\(dt=dx\)より、(式1)に代入します。

    (式1)
    =\(\displaystyle \int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{1}{\sqrt{(\frac{1}{2})^2-t^2}}dt\)
    =(式2)

    さらに、\(t=\frac{1}{2}sinθ\)とおくと、
    ●\(t\):\(-\frac{1}{2}\)⇒\(\frac{1}{2}\)が、\(θ\):\(-\frac{π}{2}\)⇒\(\frac{π}{2}\)へ
    ●\(dt=\frac{1}{2}cosθdθ\)より、(式2)に代入します。

    (式2)
    =\(\displaystyle \int_{-\frac{π}{2}}^{\frac{π}{2}} \frac{1}{\sqrt{(\frac{1}{2})^2-(\frac{1}{2} sinθ)^2}} \frac{1}{2} cosθ dθ\)
    =\(\displaystyle \int_{-\frac{π}{2}}^{\frac{π}{2}} \frac{1}{\frac{1}{2} cosθ dθ} \frac{1}{2} cosθ dθ\)
    =\(\displaystyle \int_{-\frac{π}{2}}^{\frac{π}{2}} dθ\)
    =\(π\)
    =(式3)

    2回置換しましたが、何とか積分できました!まとめると、
    \(B(\frac{1}{2},\frac{1}{2})\)= \(\frac{Γ(\frac{1}{2})Γ(\frac{1}{2})}{Γ(\frac{1}{2}+\frac{1}{2})} \)
    \(π\)= \((Γ(\frac{1}{2}))^2・1\)
    よって
    \(Γ(\frac{1}{2})=\sqrt{π}\)
    が出ました。

    ベータ関数の値を求めるときの積分は高校数学範囲でできます!

    以上、ガンマ関数の性質についてまとめました。

    まとめ

    「ガンマ関数がよくわかる(その2_大学数学編)」を解説しました。

    • ①ガンマ関数とは
    • ➁ガンマ関数が分からないなら高校数学を復習しよう!
    • ➂ガンマ関数の性質
    • ➃ガンマ関数の性質の証明
    • ➄ガンマ関数とベータ関数の関係

    ガンマ関数がよくわかる(その1_高校数学復習編)
  • ガンマ関数がよくわかる(その1_高校数学復習編)

    ガンマ関数がよくわかる(その1_高校数学復習編)

    「ガンマ関数がわからない!」、「ガンマ関数の導出方法や性質を数式で解けない!」と困っていませんか?

    こういう疑問に答えます。

    本記事のテーマ

    ガンマ関数がよくわかる(その1_高校数学復習編)
    • ①ガンマ関数とは
    • ➁ガンマ関数を攻略するための必要な高校数学スキル
    • ➂ガンマ関数を習う前に復習すべき大学入試問題その1
    • ➃ガンマ関数を習う前に復習すべき大学入試問題その2
    • ➄ガンマ関数を習う前に復習すべき大学入試問題その3
    高校数学で十分わかる!
    大学入試問題でしっかり練習してから、
    大人の数学ガンマ関数に挑もう!
    ●大学入試受験生は必読だし、
    ●数十年前に受験生だった人も復習しましょう!
    [themoneytizer id=”105233-2″]

    QCに必要な数学問題集をを販売します!

    QC検定®1級合格したい方、QCに必要な数学をしっかり学びたい方におススメです。
    QC検定®1級、2級、統計検定2級以上の数学スキルを磨くのに苦戦していませんか? 広大すぎる統計学、微分積分からQC・統計に勝てるための60題に厳選した問題集を紹介します。是非ご購入いただき、勉強してスキルを高めましょう。

    ①ガンマ関数とは

    ガンマ関数の式だけ紹介

    こんな式ですね。ビビる必要はありません!

    \(Γ(s)= \displaystyle \int_{0}^{∞} x^{s-1}e^{-x} dx\)=\((s-1)!\)

    なんじゃこりゃ!ですが、大丈夫です!

    変な式なのに、なぜか階乗の式が答えとして出て来ます。
    まず、式の紹介だけとして
    高校数学の準備をしましょう!

    ➁ガンマ関数を攻略するための必要な高校数学スキル

    必ず、復習しておさえておきたいのが、3つ

    1. 数学的帰納法
    2. \( \displaystyle \lim_{x \to \infty} x e^{-x} = 0\)
    3. 部分積分から漸化式を作る流れ

    個別の内容は高校数学の教科書で確認ください。

    これから一緒に復習する
    ➂ガンマ関数を習う前に復習すべき大学入試問題その1
    ➃ガンマ関数を習う前に復習すべき大学入試問題その2
    ➄ガンマ関数を習う前に復習すべき大学入試問題その3
    で何度も使います。

    \( \displaystyle \lim_{x \to \infty} x e^{-x} = 0\)の証明

    よく、証明せずに使ってもよいと大学入試の設問では書いていますが、ちゃんと証明できますか?

    実は大学に行くと、テイラー展開やマクローリン展開で
    \(e^x=1+x+\frac{x^2}{2!}+…\)
    と展開できるのを習うので、この式を使えば0に収束すると証明できます。

    高校数学の場合は、テイラー展開とか習わないので、こんな問いで誘導していきます。

    正の数\(x\)に対して、
    問1 \(e^x\) ≥ \(1+x+\frac{x^2}{2!}\)を示せ。
    問2 \( \displaystyle \lim_{x \to \infty} x e^{-x} = 0\)を示せ。

    どれも、典型的な問いで、
    問1は \(f(x)\)=(左辺)-(右辺)として、この関数を調べればOK!
    \(f(x)=e^x-(1+x+\frac{x^2}{2}\))
    \(f’(x)=e^x-(1+x)\)
    \(f’’(x)=e^x-1\) ≥0
    から
    \(f’(x)=e^x-(1+x)\)は単調増加で \(f’(x) \) ≥ \(f’(0)=0\)
    よって、\(f(x)=e^x-(1+x+\frac{x^2}{2}\))も単調増加で、
    \(f(x) \) ≥ \(f(0)=0\)が成り立つ。

    問2は問1を使って、挟み込みすればOK
    \(x\)と\(e^{-x}\)はともに正の数なので、
    0 <\(\frac{x}{e^x}\) < \(\frac{x}{1+x+\frac{x^2}{2}}\)となり、
    \( \displaystyle \lim_{x \to \infty} \frac{x}{1+x+\frac{x^2}{2}}= 0\)より、
    \( \displaystyle \lim_{x \to \infty} x e^{-x} = 0\)

    さらっと、行けましたでしょうか?

    では、良問な大学数学入試問題を解きながら、ガンマ関数に慣れていきましょう。

    ➂ガンマ関数を習う前に復習すべき大学入試問題その1

    問い

    \(n\)を自然数とする。
    (1) 関数\(f(x)\) = \(x^{n+1}e^{-x}\)の\(x\) ≥0 における最大値を求めよ。
    (2) 極限\( \displaystyle \lim_{x \to \infty} x^n e^{-x} \)を求めよ。
    (3) すべての自然数\(n\)に対して\( \displaystyle \lim_{x \to \infty} \displaystyle \int_{0}^{x} t^n e^{-t}dt \)=\(n!\)を示せ。
    (2015 弘前大)

    ガンマ関数を大学受験に出すとこうなります。

    典型的であるが、絶対おさえておきたい良問です。

    さっと解けますか?
    ムズイ?

    解法

    (1)の解法

    関数の最大、最小は微分して、増減表を見るのが基本ですね!

    関数\(f(x)\) = \(x^{n+1}e^{-x}\)
    微分すると、
    \(f’(x)\) = \((n+1)x^n e^{-x}- x^{n+1}e^{-x}\)
    =\(x^n e^{-x}((n+1)-x)\)

    増減表は、

    \(x\) 0 ・・・ \(n+1\) ・・・
    \(f'(x)\) + 0
    \(f(x)\) max

    より\(f(x)\)は\(x=n+1\)の時が最大値になります。
    関数\(f(n+1)\) = \((n+1)^{n+1}e^{-(n+1)}\) (答え)

    (2)の解法

    よくわからない式の極限は挟み込むのが基本です。

    (1)の結果を使います。\(f(x)\)は
    0 ≤ \(x^{n+1}e^{-x}\) ≤ \((n+1)^{n+1}e^{-(n+1)}\) 
    の制約条件が成り立ちます。

    一方、\(x^n e^{-x} \)を
    \(x^n e^{-x} \)=\(\frac{x^{n+1} e^{-x}}{x} \)と変形すると、上の不等式から

    0 ≤ \(x^n e^{-x} \)=\(\frac{x^{n+1} e^{-x}}{x} \) ≤ \(\frac{(n+1)^{n+1}e^{-(n+1)}}{x}\) 
    となります。

    \(x⇒∞\)にすると、
    \(\frac{(n+1)^{n+1}e^{-(n+1)}}{x}\) ⇒0 (分母の\(x\)が∞になるので)
    となるので、結果、

    \( \displaystyle \lim_{x \to \infty} x^n e^{-x} \)=0 (答え)

    (3)の解法

    数列の「数学的帰納法、漸化式」と積分の「部分積分」を使う重要な問題です。習得MUSTです!

    (i)\(n=1\)のとき、\(\displaystyle \int_{0}^{x} t e^{-t}dt \)
    =\(\left[-(t+1)e^{-t} \right]_{0}^{x}\)
    =1=(1!)
    より成立。

    部分積分大丈夫ですか? ⇒を微分する方向として

    \(-t e^{-t}\)⇒\(t e^{^t}- e^{-t}\)
    \(-e^{-t}\)⇒\(+ e^{-t}\)
    から
    \(-t e^{-t}–e^{-t}\)⇒\(t e^{^t}\)
    と計算できます。

    (ii)次に、\(n=k\)のとき、\( \displaystyle \lim_{x \to \infty} \displaystyle \int_{0}^{x} t^k e^{-t}dt \)=\(k!\)と仮定すると、

    (iii)\(n=k+1\)のとき、

    部分積分すると、⇒を微分する方向として
    \(-t^{k+1} e^{-t}\)⇒\(t^{k+1} e^{^t}- (k+1)t^k e^{-t}\)
    ここで止めると、
    \(\displaystyle \lim_{x \to \infty}\left[-t^{k+1} e^{-t}\right]_{0}^{x}\)=\(\displaystyle \lim_{x \to \infty}\displaystyle \int_{0}^{x} t^{k+1} e^{^t}dt \) -\(\displaystyle \lim_{x \to \infty}\displaystyle \int_{0}^{x} (k+1)t^k e^{-t}dt \)

    計算すると、

    \(\displaystyle \lim_{x \to \infty} -x^{k+1} e^{-x}\)=\(\displaystyle \lim_{x \to \infty}\displaystyle \int_{0}^{x} t^{k+1} e^{^t}dt \)-\((k+1)\) \(\displaystyle \lim_{x \to \infty}\displaystyle \int_{0}^{x} t^k e^{-t}dt \)

    (左辺)=0で、(右辺)第1項は求めたい\(n=k+1\)の式で、第2項の積分は仮定した\(n=k\)のとき\(k!\)になるので、
    (つまり、\((k+1)\) \(\displaystyle \lim_{x \to \infty}\displaystyle \int_{0}^{x} t^k e^{-t}dt \)=\(k!\))
    代入すると、

    0=\(\displaystyle \lim_{x \to \infty}\displaystyle \int_{0}^{x} t^{k+1} e^{^t}dt \)-\((k+1)k!\)
    よって、
    \(\displaystyle \lim_{x \to \infty}\displaystyle \int_{0}^{x} t^{k+1} e^{^t}dt \)=\((k+1)!\)
    となるので、\(n=k+1\)のときも成り立つ。

    よって、すべての自然数\(n\)に対して\( \displaystyle \lim_{x \to \infty} \displaystyle \int_{0}^{x} t^n e^{-t}dt \)=\(n!\)となる。(答え)

    入試は解けたら、あとはどうでもいいんですが、この式こそ、ガンマ関数なんですね!
    \(n\)を自然数とする。
    すべての自然数\(n\)に対して\( \displaystyle \lim_{x \to \infty} \displaystyle \int_{0}^{x} t^n e^{-t}dt \)=\(n!\)
    (ガンマ関数の入り口)

    いい勉強になります!

    どんどん行きます!

    ➃ガンマ関数を習う前に復習すべき大学入試問題その2

    問い

    問1 \(n\)を正の整数とする。\(t\) ≥ 0 のとき、不等式\(e^t\) > \(\frac{t^n}{n!}\)を数学的帰納法を用いて示せ。
    問2 極限\(I_m\)=\(\displaystyle \lim_{t \to \infty}\displaystyle \int_{0}^{t} x^m e^{-x}dx\) \(m=0,1,2,…)\)を求めよ。
    (2001 東北大)

    ガンマ関数を大学受験に出すとこうなります。

    典型的であるが、絶対おさえておきたい良問です。

    さっと解けますか?
    東北大だけど、ムズイ?

    解法

    (1)の解法

    (i)\(n\)=1のとき、 \(f(t)=e^t -t\)として、
    \(f’(t)=e^t \) >0 より
    \(f(t)\) > \(f(0)\)=0 より証明が成り立つ

    (ii)\(n=k\)のとき、\(e^t\) > \(\frac{t^k}{k!}\)と仮定して、
    (iii)\(n=k+1\)のとき、\(f(t)=e^t -\frac{t^{k+1}}{(k+1)!}\)として、
    \(f’(t)=e^t – \frac{(k+1) t^k}{(k+1)!}\)=\( e^t – \frac{t^k}{k!}\) > 0
    より、\(f(t)\) > \(f(0)\)=0 より証明が成り立つ

    よって、\(t\) ≥ 0 のとき、不等式\(e^t\) > \(\frac{t^n}{n!}\)が成り立つ。

    (2)の解法

    これがガンマ関数の入り口の問題です。

    部分積分すると、⇒を微分する方向として
    \(-x^m e^{-t}\)⇒\(x^m e^{-x}\)-\(mt^{m-1} e^{-t}\)
    つまり、まとめると、

    \(\displaystyle \lim_{t \to \infty}\left[-x^m e^{-t}\right]_{0}^{t} \)=\(I_m\)-\(mI_{m-1}\)

    (左辺)は
    \(\displaystyle \lim_{t \to \infty}(-t^m e^{-t}) \)で(1)の証明から
    0 ≤ \( t^m e^{-t}\) ≤ \( (m+1)!\frac{t^m}{t^{m+1}}\)として、挟み込みから0になります。
    (\(e^t\) > \(\frac{t^{m+1}}{(m+1)!}\)として代入)

    つまり、
    \(I_m\)=\(mI_{m-1}\)

    \(I_1\)は計算して1より、
    \(I_m\)=\(m!\)となる。 (答え)

    入試は解けたら、あとはどうでもいいんですが、この式こそ、ガンマ関数なんですね!
    \(n\)を自然数とする。
    すべての自然数\(n\)に対して\( \displaystyle \lim_{x \to \infty} \displaystyle \int_{0}^{x} t^n e^{-t}dt \)=\(n!\)
    (ガンマ関数の入り口)

    いい勉強になります!

    もう1つ行きます!

    ➄ガンマ関数を習う前に復習すべき大学入試問題その3

    問い

    \(a\)を正の定数とする。自然数\(n\)に対して、関数\(I_n(t)\)を
    \(I_n(t)\)= \(\displaystyle \int_{0}^{t} x^n e^{-ax}dx\)と定める。(2008 大阪府大 改)
    (1) \(e^{ax}\)=\(\sum_{k=0}^{∞} \frac{a^k}{k!} x^k \)と近似できることを用いて、
    \(\displaystyle \lim_{t \to \infty} t^n e^{-at}\)=0を示せ。
    (2) \(I_1(t)\)を求めよ。
    (3) \(I_{n+1}(t)\)と\(I_n(t)\)の関係式を求めよ。
    (4) \(J_n\)=\(\displaystyle \lim_{t \to \infty} I_n (t) \)とするとき、\(J_n\)を求めよ。

    解法

    3回目の問いなので、略解でいきます。

    (1)は挟みこみで0に持って行きたいので、\(x^n e^{-ax}\)より大きい値でt⇒∞にするとその値が明らかに0になるものを入れたい。
    QCプラネッツなら、
    \(e^{ax}\)=\(\sum_{k=0}{∞} \frac{a^k}{k!} x^k \) > \(\frac{a^(n+1)}{(n+1)!} x^{n+1}\)を使います。

    (2) \(I_1(t)\)=\(-\frac{t}{ae^{at}}-\frac{1}{a^2 e^{at}}+ 1\)
    文字式が多すぎて、センスがいまいちな結果。こういうところも府大らしい。。。

    (3) \(I_{n+1}\)=\(\frac{n+1}{a}I_n(t)+\frac{1}{a}t^{n+1}e^{-at}\)

    (4)先に∞に飛ばして、\(\frac{1}{a}t^{n+1}e^{-at}\)=0として無視して計算しましょう。
    \(J_n\)=\(\frac{n!}{a^{n-1}}J_1\)
    \(J_1\)は\(I_1(t)\)のt⇒∞なので、\(J_1\)=1
    よって、
    \(J_n\)=\(\frac{n!}{a^{n-1}} \)

    ガンマ関数の本質よりは、単なる計算力を求めているだけの問いになっているのが、ちょっと残念!な問題ですね。出題者のセンスが良くないんでしょうね。

    以上、ガンマ関数を身に着けるための重要な高校数学の演習問題です。是非解いてみてください。

    次は、ガンマの関数を大学の数学や統計学を使って解説します。けど、高校数学ができれば大丈夫!

    本記事の内容は、高校数学で解けましたね!

    まとめ

    「ガンマ関数がよくわかる(その1_高校数学復習編)」を解説しました。

    • ①ガンマ関数とは
    • ➁ガンマ関数を攻略するための必要な高校数学スキル
    • ➂ガンマ関数を習う前に復習すべき大学入試問題その1
    • ➃ガンマ関数を習う前に復習すべき大学入試問題その2
    • ➄ガンマ関数を習う前に復習すべき大学入試問題その3

    ガンマ関数がよくわかる(その1_高校数学復習編)
  • ベータ関数がよくわかる

    ベータ関数がよくわかる

    「ベータ関数がわからない!」、「ベータ関数の導出方法や性質を数式で解けない!」と困っていませんか?

    こういう疑問に答えます。

    本記事のテーマ

    ベータ関数がよくわかる
    • ①ベータ関数とは
    • ➁ベータ関数を導出
    • ➂ベータ関数を使った頻出な大学入試問題
    高校数学で十分わかる!
    大学入試問題練習にも復習にもなる!
    ●大学入試受験生は必読だし、
    ●数十年前に受験生だった人も復習しましょう!
    ガンマ関数の前に、ベータ関数から理解してきましょう!
    [themoneytizer id=”105233-2″]

    QCに必要な数学問題集をを販売します!

    QC検定®1級合格したい方、QCに必要な数学をしっかり学びたい方におススメです。
    QC検定®1級、2級、統計検定2級以上の数学スキルを磨くのに苦戦していませんか? 広大すぎる統計学、微分積分からQC・統計に勝てるための60題に厳選した問題集を紹介します。是非ご購入いただき、勉強してスキルを高めましょう。

    ①ベータ関数とは

    ベータ関数とは

    こんな式ですね。ビビる必要はありません!

    \(B(p,q)= \displaystyle \int_{0}^{1} x^{p-1}(1-x)^{q-1} dx\)
    =\(\frac{(p-1)!(q-1)!}{(p+q-1)!}\)

    なんじゃこりゃ!ですが、大丈夫です!

    高校数学でよく出て来るベータ関数

    一番大事なのは、

    曲線と直線間の面積公式が最初

    そして、よく見かける式がベータ関数の入り口です。

    \(\displaystyle \int_{α}^{β} (x-α)^m (x-β)^n dx \)

    ここで、m=n=1なら、2次関数と直線との面積で、暗記する公式
    \(\displaystyle \int_{α}^{β} (x-α) (x-β)dx \)=\(-\frac{1}{6}(β-α)^3\)
    ですよね!

    ベータ関数

    ベータ関数とガンマ関数の関係式

    大学数学以上では頻繁に使うので、先に紹介します。

    \(B(p,q)=\frac{Γ(p)Γ(q)}{Γ(p+q)} \)

    この証明は、ガンマ関数の記事で解説しますが、ここでは簡単なイメージです。

    \(B(p,q)\)=\(\frac{(p-1)!(q-1)!}{(p+q-1)!}\)
    \(Γ(p)=(p-1)!\)、\(Γ(q)=(q-1)!\)、\(Γ(p+q)=(p+q-1)!\)より
    \(B(p,q)\)=\(\frac{(p-1)!(q-1)!}{(p+q-1)!}\)= \(\frac{Γ(p)Γ(q)}{Γ(p+q)} \)と
    階乗「!」でみていけば公式が成り立つのが、わかりますね。

    高校数学で十分説明つきますね!

    ガンマ関数が増えたら、ベータ関数でまとめられないか?を考える

    では、ガチでベータ関数を導出してみましょう。

    ➁ベータ関数を導出

    【大学入試頻出問題】積分から

    次の式を証明しましょう! 大学入試で絶対マスターすべき良問です!

    【問】以下の式を導出せよ。
    \(I(m,n)= \displaystyle \int_{a}^{b} (x-a)^m (x-b)^ndx \)
    =\((-1)^n \frac{m!n!}{(m+n+1)!}(b-a)^{m+n+1}\)

    解法

    まず、部分積分すると、漸化式が作れます。

    \(\left[ \frac{1}{m+1}(x-a)^{m+1} (x-b)^n \right]_{a}^{b}\)=\(I(m,n)+\frac{n}{m+1}I(m+1,n-1)\)
    なお、(左辺)は0なので、
    \(I(m,n)\)=\(-\frac{n}{m+1}I(m+1,n-1)\) (式1)

    (式1)から、
    \(I(m,n)\)=\(-\frac{n}{m+1}I(m+1,n-1)\)= \((-\frac{n}{m+1})(-\frac{n-1}{m+2})I(m+2,n-2)\)
    =…=\((-1)^n \frac{m!n1}{(m+n)!} I(m+n,0)\)
    =\((-1)^n \frac{m!n1}{(m+n+1)!} (b-a)^{m+n+1}\) (式2)

    と証明できます。今後、演習問題として取り上げたいので、計算途中を端折りましたが、一度は見ながら導出してみてください。

    ベータ関数への導出

    問:次の式を導出せよ。
    \(B(a,b)= \displaystyle \int_{0}^{1} x^{a-1}(1-x)^{b-1} dx\)
    =\(\frac{(a-1)!(b-1)!}{(a+b-1)!}\)

    これも、大学入試で出題されてもいい良問です。まさにベータ関数の導出です。

    (式2)を再掲します。
    \(I(m,n)\)=\((-1)^n \frac{m!n1}{(m+n+1)!} (b-a)^{m+n+1}\) (式2)

    ここで、上手な置き換えをします。
    \(t=\frac{x-a}{b-a}\)と置くと、

    ●\((x-a)=t(b-a)\)
    ●\((x-b)=(t-1)(b-1)\)
    ●\(dx=(b-a)dt\)

    積分区間は

    積分区間
    x a b
    t 0 1

    これを(式2)に代入すると
    \(I(m,n)= \displaystyle \int_{a}^{b} (x-a)^m (x-b)^ndx \)
    =\((-1)^n \frac{m!n1}{(m+n+1)!} (b-a)^{m+n+1}\)

    (右辺)=\(\displaystyle \int_{a}^{b} (x-a)^m (x-b)^ndx \)
    =\(\displaystyle \int_{0}^{1} t^m (b-a)^m (t-1)^n (b-a)^n (b-a) dt \)
    =\((-1)^n (b-a)^{m+n+1} \displaystyle \int_{0}^{1} t^m (1-t)^n dt \)
    =\((-1)^n \frac{m!n1}{(m+n+1)!} (b-a)^{m+n+1}\)
    より、

    \(\displaystyle \int_{0}^{1} t^m (1-t)^n dt \)=\(\frac{m!n!}{(m+n+1)!} \)
    ここで、 \(m⇒m-1,n⇒n-1\)に変えると、
    \(\displaystyle \int_{0}^{1} t^{m-1} (1-t)^{n-1} dt \)=\(\frac{(m-1)!(n-1)!}{(m+n-1)!} \)
    となり、ベータ関数が導出できます!

    ➂ベータ関数を使った頻出な大学入試問題

    三角関数の積分とベータ関数

    ベータ関数は

    \(B(a,b)= \displaystyle \int_{0}^{1} x^{a-1}(1-x)^{b-1} dx\)
    =\(\frac{(a-1)!(b-1)!}{(a+b-1)!}\)

    ここで、\(t\)は 0 ≤ \(t\) ≤ 1ですから、何か \(cos,sin\)で置きたくなります。

    \(t=sin^2 θ\)と置くと、
    \(B(a,b)= 2\displaystyle \int_{0}^{\frac{π}{2}} sin^{2a-1}θ cos^{2b-1} θ dθ\)
    =\(\frac{(a-1)!(b-1)!}{(a+b-1)!}\)
    となる。

    これは、よく \(x^{\frac{a}{b}}+y^{\frac{c}{d}}=1\)の曲線の面積を求める時によく使いますし、大学入試でも頻出問題ですね。

    ベータ関数に関する大学入試問題

    過去の入試問題を紹介しましょう。解けるかな?

    自然数\(m,n\)において、第1象限内の曲線\(x^{\frac{1}{m}}+y^{\frac{1}{n}}\)と\(x\)軸、\(y軸\)で囲まれる部分の面積\(A(m,n)\)を求めよ。(東工大)
    正の整数\(m,n\)において、\(A(m,n)\)を次の定積分で定める。(東北大)
    \(A(m,n)=\displaystyle \int_{0}^{\frac{π}{2}} cos^m x sin^n x dx\)
    (1) 等式 \(A(m,n)=A(n,m)\)および \(A(m+2,n)+A(m,n+2)=A(m,n)\)を示せ。
    (2) 等式 \(A(m,n+2)\)=\(\frac{n+1}{m+1}A(m+2,n)\)を示せ。

    ベータ関数を身に着けるための重要な演習問題です。是非解いてみてください。

    いろいろな関数を使って、確率変数の変換を見て慣れていきましょう!

    本記事の内容は、ほぼ高校数学で解けましたね!

    まとめ

    「ベータ関数がよくわかる」を解説しました。

    • ①ベータ関数とは
    • ➁ベータ関数を導出
    • ➂ベータ関数を使った頻出な大学入試問題

  • 2変数の確率変数の変換がよくわかる(Z=X/Y商の場合)

    2変数の確率変数の変換がよくわかる(Z=X/Y商の場合)

    「確率変数の変換が、わからない、解けない?」、「t分布、F分布の確率密度関数への導出がわからない」と困っていませんか?

    こういう疑問に答えます。

    本記事のテーマ

    2変数の確率変数の変換がよくわかる(Z=X/Y商の場合)
    • ①2変数の確率変数の変換の基本をマスターする
    • ➁ Z=X/Y商の場合(事例1)
    • ➂ Z=X/Y商の場合(事例2)
    [themoneytizer id=”105233-2″]

    QCに必要な数学問題集をを販売します!

    QC検定®1級合格したい方、QCに必要な数学をしっかり学びたい方におススメです。
    QC検定®1級、2級、統計検定2級以上の数学スキルを磨くのに苦戦していませんか? 広大すぎる統計学、微分積分からQC・統計に勝てるための60題に厳選した問題集を紹介します。是非ご購入いただき、勉強してスキルを高めましょう。

    ①2変数の確率変数の変換の基本をマスターする

    確率変数の変換は高校数学でほぼイケます!大丈夫!

    確率変数の変換は難しいけど、
    理解しないと、正規分布、t分布、χ2乗分布、F分布との関係が理解できないから困っている!
    確率変数の変換は高校数学でほぼイケます!大丈夫!
    1つ条件があります!

    それは、

    公式暗記より、実演でマスターした方が速い!
    1つ解法で解ける解法で、たくさんの例題を見る方がマスターは速い!

    慣れてきたら、公式を見ましょう。

    2変数の確率変数の変換の基本をマスターする

    関連記事に2変数の確率変数の変換の求め方をわかりやすく解説しています。

    【まとめ】2変数の確率変数の変換がよくわかる
    2変数の確率変数の変換が計算できますか?本記事では,理解が難しい公式をそのまま使わずに,高校数学で十分解ける解法を解説します。今回は変換したいパターンをすべてを解説!教科書よりわかりやすく、 ほぼ高校数学でイケる方法で解説! t分布、F分布の確率密度関数を導出したい方は必読な記事です。

    同じ1つの解法でイケますので、ご安心ください。

    2変数の確率変数の変換の求め方

    1変数の確率変数の変換方法と同様に決まった解法があります。

    変数\(x,y\)を変数\(z,w\)に変換するとします。

    1. \(x=x(z,w),y=(z,w)\)の式を\(z=z(x,y),w=w(x,y)\)の式に直す
    2. \(f(x,y)dxdy\)=\(f(x(z,w),y(z,w)|det J| dzdw\)に変換する
    3. 2変数\(z,w\)の同時確率密度関数\(g(z,w)\)は
      \(g(z,w)=f(x(z,w),y(z,w)|det J| \)で求まる。
    4. 実際は\(z,w\)のうち、どちらかは不要な変数なので、片方の変数で積分して、残りの変数についての周囲確率密度関数
      (例えば \(g(z)= \displaystyle \int_{w_1}^{w_2} g(z,w)dw \))
      を計算する。

    ここで、注意点があります。
    Jは
    J=\(\begin{pmatrix}
    \frac{\partial x}{ \partial z} & \frac{\partial x}{\partial w} \\
    \frac{\partial y}{\partial z} & \frac{\partial y}{\partial w}
    \end{pmatrix}\)

    また、\(det J\)は行列式ヤコビアンといいますね。

    A=\(\begin{pmatrix}
    a & b \\
    c & d
    \end{pmatrix}\)
    のとき、行列式ヤコビアン\(det A\)は、
    \(det A=ad-bc\)
    で計算できます。

    計算力が求められる場合がありますが、基本は高校数学でイケます!

    では、実践編に入ります。最初は簡単な式から行きます!

    ➁ Z=X/Y積の場合(事例1)

    QCプラネッツでは、5つの事例を関連記事で紹介していきます。ご確認ください。

    1. 簡単な関数の変換事例
    2. t分布の確率密度関数の導出
    3. F分布の確率密度関数の導出>
    4. 1変数でZ=XY(積)の場合の変換方法
    5. 1変数でZ=X/Y(商)の場合の変換方法

    今回は、その5「1変数でZ=X/Y(商)の場合の変換方法」です。

    1変数の変換については、関連記事でまとめていますが、主にZ=X+Y,Z=X-Yの加減についてでした。

    【まとめ】1変数の確率変数の変換がよくわかる
    1変数の確率変数の変換が計算できますか?本記事では,理解が難しい公式をそのまま使わずに,高校数学で十分解ける解法を解説します。今回は変換したいパターンをすべてを解説!教科書よりわかりやすく、ほぼ高校数学でイケる方法で解説! 確率変数の変換が計算したい方は必読な記事です。

    ただし、乗商については書いていません。なぜなら、

    1変数の乗商の変換は2変数の変換の解法の方が解きやすいから

    では、解説していきます。2例解説します。

    (3) 1変数でZ=X/Y(商)の場合の変換方法

    【例題】
    2つの確率変数\(X\),\(Y\)が独立で、それぞれ一様分布U(0,1)に従うとき、確率変数\(Z\)を\(Z=X/Y\)とするときの、確率密度関数\(h(z)\)を求めよ。

    やってみましょう。

    まず、\(X,Y\)の確率密度関数を定義します。
    \(f(x)\)=1 (0 ≤ \(x\) ≤ 1)
    \(g(y)\)=1 (0 ≤ \(y\) ≤ 1)

    解き方は、

    1. \(x=x(z,w),y=(z,w)\)の式を\(z=z(x,y),w=w(x,y)\)の式に直す
    2. \(f(x,y)dxdy\)=\(f(x(z,w),y(z,w)|det J| dzdw\)に変換する
    3. 2変数\(z,w\)の同時確率密度関数\(g(z,w)\)は
      \(g(z,w)=f(x(z,w),y(z,w)|det J| \)で求まる。
    4. 実際は\(z,w\)のうち、どちらかは不要な変数なので、片方の変数で積分して、残りの変数についての周囲確率密度関数
      (例えば \(g(z)= \displaystyle \int_{w_1}^{w_2} g(z,w)dw \))
      を計算する。

    ですから、1つずつ行きましょう。

    (i)\(x=x(z,w),y=(z,w)\)の式を\(z=z(x,y),w=w(x,y)\)の式に直す

    ここで、変換する変数を定義します。

    \(Z\)=\(X/Y\)、\(W\)=\(Y\)とおく、つまり
    \(Z\)=\(X/W\)、\(W\)=\(Y\)とおきます。

    \(x=x(z,w),y=y(z,w)\)に直します。
    \(x\)=\(zw\)
    \(y\)=\(w\)

    (ii)\(f(x,y)dxdy\)=\(f(x(z,w),y(z,w)|det J| dzdw\)に変換する

    次に、ヤコビ行列から行列式ヤコビアンを求めます。

    ヤコビ行列Jは
    Jは
    J=\(\begin{pmatrix}
    \frac{\partial x}{ \partial z} & \frac{\partial x}{\partial w} \\
    \frac{\partial y}{\partial z} & \frac{\partial y}{\partial w}
    \end{pmatrix}\)

    J=\(\begin{pmatrix}
    w & z \\
    0 & 1
    \end{pmatrix}\)

    次に行列式ヤコビアンは
    \(det J\)=\(w・1-0・z\)
    =\(w \)
    で計算できます。

    ここまで大丈夫ですね!

    (iii)2変数\(z,w\)の同時確率密度関数\(g(z,w)\)を導出

    代入すると、

    \(f(x,y)dxdy\)=\(f(x(z,w),y(z,w)|det J| dzdw\)
    \(f(x(z,w)\)=1, \(g(x(z,w)\)=1に注意して、
    =\( 1・1・ w dzdw\)
    =\(p(z,w)dzdw\)
    =(式1)

    結構、スッキリしますね!

    2変数\(z,w\)に関する同時確率密度関数\(p(z,w)dzdw\)が求まりました。
    次に、zについての周囲確率密度関数を求めます。

    なぜなら、\(w=y\)であり、\(w\)は不要な変数だから\(w\)で積分します。

    ここで、注意なのが、

    変数の範囲が限定されているため、積分区間は場合分けが必要
    (0 ≤ \(x\) ≤ 1)
    (0 ≤ \(y\) ≤ 1)

    変数\(w\)については、以下の3つの場合分けが発生します。

    ①\( h(z)\)=0 (\(z\) ≤ 0) (積分区間が無い)
    ➁\( h(z)=\displaystyle \int_{0}^{1} w dw \)=\(\left[\frac{1}{2}w^2 \right]_{0}^{1}\)=\(\frac{1}{2}\)(0 < \(z\) ≤ 1)
    ➂\( h(z)=\displaystyle \int_{0}^{z} w dw \)=\(\left[\frac{1}{2}w^2 \right]_{0}^{z}\)=\(\frac{1}{2}z^2\)(1 < \(z\))

    となります。図で解説します。ただし、\(z=x/y\)であり\(w=y\)で積分するので、\(xy\)の軸が通常と逆にしています。

    5-1

    1変数の積の変換は2変数の変換から計算できますね!

    もう1つ事例を挙げます。次は、指数分布どうしです。

    ➂ Z=X/Y商の場合(事例2)

    (4) 1変数でZ=X/Y商の場合の変換方法

    【例題】
    2つの確率変数\(X\),\(Y\)が独立で、それぞれ指数分布に従うとき、
    \(f(x)=λe^{-λx} \)(0 ≤ \(x\))
    \(g(y)=μe^{-μy} \)(0 ≤ \(y\))
    確率変数\(Z\)を\(Z=X/Y\)とするときの、確率密度関数\(h(z)\)を求めよ。

    やってみましょう。

    解き方は、事例1と同じです。

    1. \(x=x(z,w),y=(z,w)\)の式を\(z=z(x,y),w=w(x,y)\)の式に直す
    2. \(f(x,y)dxdy\)=\(f(x(z,w),y(z,w)|det J| dzdw\)に変換する
    3. 2変数\(z,w\)の同時確率密度関数\(g(z,w)\)は
      \(g(z,w)=f(x(z,w),y(z,w)|det J| \)で求まる。
    4. 実際は\(z,w\)のうち、どちらかは不要な変数なので、片方の変数で積分して、残りの変数についての周囲確率密度関数
      (例えば \(g(z)= \displaystyle \int_{w_1}^{w_2} g(z,w)dw \))
      を計算する。

    ですから、1つずつ行きましょう。

    (i)\(x=x(z,w),y=(z,w)\)の式を\(z=z(x,y),w=w(x,y)\)の式に直す

    ここで、変換する変数を定義します。

    \(Z\)=\(X/Y\)、\(W\)=\(Y\)とおく、つまり
    \(Z\)=\(X/W\)、\(W\)=\(Y\)とおきます。

    \(x=x(z,w),y=y(z,w)\)に直します。
    \(x\)=\(zw\)
    \(y\)=\(w\)

    (ii)\(f(x,y)dxdy\)=\(f(x(z,w),y(z,w)|det J| dzdw\)に変換する

    次に、ヤコビ行列から行列式ヤコビアンを求めます。

    ヤコビ行列Jは
    Jは
    J=\(\begin{pmatrix}
    \frac{\partial x}{ \partial z} & \frac{\partial x}{\partial w} \\
    \frac{\partial y}{\partial z} & \frac{\partial y}{\partial w}
    \end{pmatrix}\)

    J=\(\begin{pmatrix}
    w & z \\
    0 & 1
    \end{pmatrix}\)

    次に行列式ヤコビアンは
    \(det J\)=\(w・1-0・z \)
    =\(w\)
    で計算できます。

    ここまで大丈夫ですね!

    (iii)2変数\(z,w\)の同時確率密度関数\(g(z,w)\)を導出

    代入すると、

    \(f(x,y)dxdy\)=\(λe^{-λx}・μe^{-μy}\)
    =\(f(x(z,w),y(z,w)|det J| dzdw\)
    =\(λμe^{-λ(zw)}・e^{-μw} w dw\)
    =(式1)

    よって、2変数\(z,w\)に関する同時確率密度関数\(p(z,w)dzdw\)は、
    \(p(z,w)dzdw\)=\(λμe^{-λ(zw)}・e^{-μw} w \)

    2変数\(z,w\)に関する同時確率密度関数\(p(z,w)dzdw\)が求まりました。
    次に、zについての周囲確率密度関数を求めます。

    なぜなら、\(w=y\)であり、\(w\)は不要な変数だから\(w\)で積分します。

    ここで、注意なのが、

    変数の範囲が限定されているため、積分区間は場合分けが必要
    (0 ≤ \(x\))
    (0 ≤ \(y\))

    変数\(w\)については、以下2つの場合分けが発生します。

    ●\( h(z)\)=0 (\(w\) ≤ 0) (積分区間が無い)
    ●\( h(z)=\displaystyle \int_{0}^{∞} (λμe^{-λ(zw)}・e^{-μw} w dw \)

    積分すると、
    \( h(z)=\displaystyle \int_{0}^{∞} (λμe^{-(λz+μ)w)} w dw \)
    =\(\left[-\frac{λμ}{(λz+μ)^2} e^{-(λz+μ)w} \right]_{0}^{∞}\)
    =\(\frac{λμ}{(λz+μ)^2}\)

    計算できました!

    伝えたいことは

    1変数の積の変換は2変数の変換から計算できますね!

    いろいろな関数を使って、確率変数の変換を見て慣れていきましょう!

    本記事の内容は、ほぼ高校数学で解けましたね!

    まとめ

    「2変数の確率変数の変換がよくわかる(Z=X/Y商の場合)」を解説しました。

    • ①2変数の確率変数の変換の基本をマスターする
    • ➁ Z=X/Y商の場合(事例1)
    • ➂ Z=X/Y商の場合(事例2)

  • 2変数の確率変数の変換がよくわかる(1変数の積の場合)

    2変数の確率変数の変換がよくわかる(1変数の積の場合)

    「確率変数の変換が、わからない、解けない?」、「t分布、F分布の確率密度関数への導出がわからない」と困っていませんか?

    こういう疑問に答えます。

    本記事のテーマ

    2変数の確率変数の変換がよくわかる(Z=XY積の場合)
    • ①2変数の確率変数の変換の基本をマスターする
    • ➁ Z=XY積の場合(事例1)
    • ➂ Z=XY積の場合(事例2)
    [themoneytizer id=”105233-2″]

    QCに必要な数学問題集をを販売します!

    QC検定®1級合格したい方、QCに必要な数学をしっかり学びたい方におススメです。
    QC検定®1級、2級、統計検定2級以上の数学スキルを磨くのに苦戦していませんか? 広大すぎる統計学、微分積分からQC・統計に勝てるための60題に厳選した問題集を紹介します。是非ご購入いただき、勉強してスキルを高めましょう。

    ①2変数の確率変数の変換の基本をマスターする

    確率変数の変換は高校数学でほぼイケます!大丈夫!

    確率変数の変換は難しいけど、
    理解しないと、正規分布、t分布、χ2乗分布、F分布との関係が理解できないから困っている!
    確率変数の変換は高校数学でほぼイケます!大丈夫!
    1つ条件があります!

    それは、

    公式暗記より、実演でマスターした方が速い!
    1つ解法で解ける解法で、たくさんの例題を見る方がマスターは速い!

    慣れてきたら、公式を見ましょう。

    2変数の確率変数の変換の基本をマスターする

    関連記事に2変数の確率変数の変換の求め方をわかりやすく解説しています。

    【まとめ】2変数の確率変数の変換がよくわかる
    2変数の確率変数の変換が計算できますか?本記事では,理解が難しい公式をそのまま使わずに,高校数学で十分解ける解法を解説します。今回は変換したいパターンをすべてを解説!教科書よりわかりやすく、 ほぼ高校数学でイケる方法で解説! t分布、F分布の確率密度関数を導出したい方は必読な記事です。

    同じ1つの解法でイケますので、ご安心ください。

    2変数の確率変数の変換の求め方

    1変数の確率変数の変換方法と同様に決まった解法があります。

    変数\(x,y\)を変数\(z,w\)に変換するとします。

    1. \(x=x(z,w),y=(z,w)\)の式を\(z=z(x,y),w=w(x,y)\)の式に直す
    2. \(f(x,y)dxdy\)=\(f(x(z,w),y(z,w)|det J| dzdw\)に変換する
    3. 2変数\(z,w\)の同時確率密度関数\(g(z,w)\)は
      \(g(z,w)=f(x(z,w),y(z,w)|det J| \)で求まる。
    4. 実際は\(z,w\)のうち、どちらかは不要な変数なので、片方の変数で積分して、残りの変数についての周囲確率密度関数
      (例えば \(g(z)= \displaystyle \int_{w_1}^{w_2} g(z,w)dw \))
      を計算する。

    ここで、注意点があります。
    Jは
    J=\(\begin{pmatrix}
    \frac{\partial x}{ \partial z} & \frac{\partial x}{\partial w} \\
    \frac{\partial y}{\partial z} & \frac{\partial y}{\partial w}
    \end{pmatrix}\)

    また、\(det J\)は行列式ヤコビアンといいますね。

    A=\(\begin{pmatrix}
    a & b \\
    c & d
    \end{pmatrix}\)
    のとき、行列式ヤコビアン\(det A\)は、
    \(det A=ad-bc\)
    で計算できます。

    計算力が求められる場合がありますが、基本は高校数学でイケます!

    では、実践編に入ります。最初は簡単な式から行きます!

    ➁ Z=XY積の場合(事例1)

    QCプラネッツでは、5つの事例を関連記事で紹介していきます。ご確認ください。

    1. 簡単な関数の変換事例
    2. t分布の確率密度関数の導出
    3. F分布の確率密度関数の導出>
    4. 1変数でZ=XY(積)の場合の変換方法
    5. 1変数でZ=X/Y(商)の場合の変換方法

    今回は、その4「1変数でZ=XY(積)の場合の変換方法」です。

    1変数の変換については、関連記事でまとめていますが、主にZ=X+Y,Z=X-Yの加減についてでした。

    【まとめ】1変数の確率変数の変換がよくわかる
    1変数の確率変数の変換が計算できますか?本記事では,理解が難しい公式をそのまま使わずに,高校数学で十分解ける解法を解説します。今回は変換したいパターンをすべてを解説!教科書よりわかりやすく、ほぼ高校数学でイケる方法で解説! 確率変数の変換が計算したい方は必読な記事です。

    ただし、乗商については書いていません。なぜなら、

    1変数の乗商の変換は2変数の変換の解法の方が解きやすいから

    では、解説していきます。2例解説します。

    (3) 1変数でZ=XY(積)の場合の変換方法

    【例題】
    2つの確率変数\(X\),\(Y\)が独立で、それぞれ一様分布U(0,1)に従うとき、確率変数\(Z\)を\(Z=XY\)とするときの、確率密度関数\(h(z)\)を求めよ。

    やってみましょう。

    まず、\(X,Y\)の確率密度関数を定義します。
    \(f(x)=1\) (0 ≤ \(x\) ≤ 1)
    \(g(y)=1\) (0 ≤ \(y\) ≤ 1)

    解き方は、

    1. \(x=x(z,w),y=(z,w)\)の式を\(z=z(x,y),w=w(x,y)\)の式に直す
    2. \(f(x,y)dxdy\)=\(f(x(z,w),y(z,w)|det J| dzdw\)に変換する
    3. 2変数\(z,w\)の同時確率密度関数\(g(z,w)\)は
      \(g(z,w)=f(x(z,w),y(z,w)|det J| \)で求まる。
    4. 実際は\(z,w\)のうち、どちらかは不要な変数なので、片方の変数で積分して、残りの変数についての周囲確率密度関数
      (例えば \(g(z)= \displaystyle \int_{w_1}^{w_2} g(z,w)dw \))
      を計算する。

    ですから、1つずつ行きましょう。

    (i)\(x=x(z,w),y=(z,w)\)の式を\(z=z(x,y),w=w(x,y)\)の式に直す

    ここで、変換する変数を定義します。

    \(Z\)=\(XY\)、\(W\)=\(Y\)とおく、つまり
    \(Z\)=\(XW\)、\(W\)=\(Y\)とおきます。

    \(x=x(z,w),y=y(z,w)\)に直します。
    \(x\)=\(\frac{z}{w}\)
    \(y\)=\(w\)

    (ii)\(f(x,y)dxdy\)=\(f(x(z,w),y(z,w)|det J| dzdw\)に変換する

    次に、ヤコビ行列から行列式ヤコビアンを求めます。

    ヤコビ行列Jは
    Jは
    J=\(\begin{pmatrix}
    \frac{\partial x}{ \partial z} & \frac{\partial x}{\partial w} \\
    \frac{\partial y}{\partial z} & \frac{\partial y}{\partial w}
    \end{pmatrix}\)

    J=\(\begin{pmatrix}
    \frac{1}{w} & -\frac{z}{w^2} \\
    0 & 1
    \end{pmatrix}\)

    次に行列式ヤコビアンは
    \(det J\)=\(\frac{1}{w}・1-0・(-\frac{z}{w^2}) \)
    =\(\frac{1}{w} \)
    で計算できます。

    ここまで大丈夫ですね!

    (iii)2変数\(z,w\)の同時確率密度関数\(g(z,w)\)を導出

    代入すると、

    \(f(x,y)dxdy\)=\(f(x(z,w),y(z,w)|det J| dzdw\)
    \(f(x(z,w)\)=1, \(g(x(z,w)\)=1に注意して、
    =\( 1・1 \frac{1}{w} dzdw\)
    =\(p(z,w)dzdw\)
    =(式1)

    結構、スッキリしますね!

    2変数\(z,w\)に関する同時確率密度関数\(p(z,w)dzdw\)が求まりました。
    次に、zについての周囲確率密度関数を求めます。

    なぜなら、\(w=y\)であり、\(w\)は不要な変数だから\(w\)で積分します。

    ここで、注意なのが、

    変数の範囲が限定されているため、積分区間は場合分けが必要
    (0 ≤ \(x\) ≤ 1)
    (0 ≤ \(y\) ≤ 1)

    変数\(w\)については、以下の3つの場合分けが発生します。

    ●\( h(z)\)=0 (\(w\) ≤ 0) (積分区間が無い)
    ●\( h(z)=\displaystyle \int_{0}^{w} \frac{1}{w}dw \)=\(\left[log w \right]_{z}^{1}\)=\(-log z\)
    ●\( h(z)\)=0 (\(w\) ≥ 0) (積分区間が無い)

    となります。ここが難しいですね!

    1変数の積の変換は2変数の変換から計算できますね!

    もう1つ事例を挙げます。次は、積分が困難なので、途中で終わる場合です。

    ➂ Z=XY積の場合(事例2)

    (4) 1変数でZ=XY(積)の場合の変換方法

    【例題】
    2つの確率変数\(X\),\(Y\)が独立で、それぞれ指数分布に従うとき、
    \(f(x)=λe^{-λx} \)(0 ≤ \(x\))
    \(g(y)=μe^{-μy} \)(0 ≤ \(y\))
    確率変数\(Z\)を\(Z=XY\)とするときの、確率密度関数\(h(z)\)を求めよ。

    やってみましょう。

    解き方は、事例1と同じです。

    1. \(x=x(z,w),y=(z,w)\)の式を\(z=z(x,y),w=w(x,y)\)の式に直す
    2. \(f(x,y)dxdy\)=\(f(x(z,w),y(z,w)|det J| dzdw\)に変換する
    3. 2変数\(z,w\)の同時確率密度関数\(g(z,w)\)は
      \(g(z,w)=f(x(z,w),y(z,w)|det J| \)で求まる。
    4. 実際は\(z,w\)のうち、どちらかは不要な変数なので、片方の変数で積分して、残りの変数についての周囲確率密度関数
      (例えば \(g(z)= \displaystyle \int_{w_1}^{w_2} g(z,w)dw \))
      を計算する。

    ですから、1つずつ行きましょう。

    (i)\(x=x(z,w),y=(z,w)\)の式を\(z=z(x,y),w=w(x,y)\)の式に直す

    ここで、変換する変数を定義します。

    \(Z\)=\(XY\)、\(W\)=\(Y\)とおく、つまり
    \(Z\)=\(XW\)、\(W\)=\(Y\)とおきます。

    \(x=x(z,w),y=y(z,w)\)に直します。
    \(x\)=\(\frac{z}{w}\)
    \(y\)=\(w\)

    (ii)\(f(x,y)dxdy\)=\(f(x(z,w),y(z,w)|det J| dzdw\)に変換する

    次に、ヤコビ行列から行列式ヤコビアンを求めます。

    ヤコビ行列Jは
    Jは
    J=\(\begin{pmatrix}
    \frac{\partial x}{ \partial z} & \frac{\partial x}{\partial w} \\
    \frac{\partial y}{\partial z} & \frac{\partial y}{\partial w}
    \end{pmatrix}\)

    J=\(\begin{pmatrix}
    \frac{1}{w} & -\frac{1}{w^2} \\
    0 & 1
    \end{pmatrix}\)

    次に行列式ヤコビアンは
    \(det J\)=\(\frac{1}{w}・1-0・(-\frac{1}{w^2}) \)
    =\(\frac{1}{w} \)
    で計算できます。

    ここまで大丈夫ですね!

    (iii)2変数\(z,w\)の同時確率密度関数\(g(z,w)\)を導出

    代入すると、

    \(f(x,y)dxdy\)=\(λe^{-λx}・μe^{-μy}\)
    =\(f(x(z,w),y(z,w)|det J| dzdw\)
    =\(λμe^{-λ\frac{z}{w}}・e^{-μw} \frac{1}{w}dw\)
    =(式1)

    よって、2変数\(z,w\)に関する同時確率密度関数\(p(z,w)dzdw\)は、
    \(p(z,w)dzdw\)=\(λμe^{-λ\frac{z}{w}}・e^{-μw} \frac{1}{w}\)

    2変数\(z,w\)に関する同時確率密度関数\(p(z,w)dzdw\)が求まりました。
    次に、zについての周囲確率密度関数を求めます。

    なぜなら、\(w=y\)であり、\(w\)は不要な変数だから\(w\)で積分します。

    ここで、注意なのが、

    変数の範囲が限定されているため、積分区間は場合分けが必要
    (0 ≤ \(x\))
    (0 ≤ \(y\))

    変数\(w\)については、以下2つの場合分けが発生します。

    ●\( h(z)\)=0 (\(w\) ≤ 0) (積分区間が無い)
    ●\( h(z)=\displaystyle \int_{0}^{∞} λμe^{-λ\frac{z}{w}}・e^{-μw} \frac{1}{w}dw \)

    実は、この
    \( h(z)=\displaystyle \int_{0}^{∞} λμe^{-λ\frac{z}{w}}・e^{-μw} \frac{1}{w}dw \)
    の積分が非常に難しいです。なぜなら、

    \(e^{-\frac{1}{w}}・e^{-w}\)の積分で、特に、\(e^{-\frac{1}{w}}\)が難しいです。

    一旦ここで、保留しましょう。

    指数関数の指数が分数で、分母に積分したい変数が入ると計算が一気に難しくなるので、あまりZ=XYのパターンは出ないと思ってよいでしょう。

    うまく計算ができないパターンもブログとして掲載しますね。
    教科書は、うまく計算ができる例だけしかないので、あたかもどんな関数でも変換ができるように錯覚しがちです。

    とは、言っても、伝えたいことは

    1変数の積の変換は2変数の変換から計算できますね!

    いろいろな関数を使って、確率変数の変換を見て慣れていきましょう!

    本記事の内容は、ほぼ高校数学で解けましたね!

    まとめ

    「2変数の確率変数の変換がよくわかる(Z=XY積の場合)」を解説しました。

    • ①2変数の確率変数の変換の基本をマスターする
    • ➁ Z=XY積の場合(事例1)
    • ➂ Z=XY積の場合(事例2)

  • F分布の確率密度関数の導出がよくわかる

    F分布の確率密度関数の導出がよくわかる

    「確率変数の変換が、わからない、解けない?」、「t分布、F分布の確率密度関数への導出がわからない」と困っていませんか?

    こういう疑問に答えます。

    本記事のテーマ

    2変数の確率変数の変換がよくわかる(F分布の確率密度関数の導出)
    • ①2変数の確率変数の変換の基本をマスターする
    • ➁F分布の確率密度関数の導出
    [themoneytizer id=”105233-2″]

    QCに必要な数学問題集をを販売します!

    QC検定®1級合格したい方、QCに必要な数学をしっかり学びたい方におススメです。
    QC検定®1級、2級、統計検定2級以上の数学スキルを磨くのに苦戦していませんか? 広大すぎる統計学、微分積分からQC・統計に勝てるための60題に厳選した問題集を紹介します。是非ご購入いただき、勉強してスキルを高めましょう。

    ①2変数の確率変数の変換の基本をマスターする

    確率変数の変換は高校数学でほぼイケます!大丈夫!

    確率変数の変換は難しいけど、
    理解しないと、正規分布、t分布、χ2乗分布、F分布との関係が理解できないから困っている!
    確率変数の変換は高校数学でほぼイケます!大丈夫!
    1つ条件があります!

    それは、

    公式暗記より、実演でマスターした方が速い!
    1つ解法で解ける解法で、たくさんの例題を見る方がマスターは速い!

    慣れてきたら、公式を見ましょう。

    2変数の確率変数の変換の基本をマスターする

    関連記事に2変数の確率変数の変換の求め方をわかりやすく解説しています。

    【まとめ】2変数の確率変数の変換がよくわかる
    2変数の確率変数の変換が計算できますか?本記事では,理解が難しい公式をそのまま使わずに,高校数学で十分解ける解法を解説します。今回は変換したいパターンをすべてを解説!教科書よりわかりやすく、 ほぼ高校数学でイケる方法で解説! t分布、F分布の確率密度関数を導出したい方は必読な記事です。

    同じ1つの解法でイケますので、ご安心ください。

    2変数の確率変数の変換の求め方

    1変数の確率変数の変換方法と同様に決まった解法があります。

    変数\(x,y\)を変数\(z,w\)に変換するとします。

    1. \(x=x(z,w),y=(z,w)\)の式を\(z=z(x,y),w=w(x,y)\)の式に直す
    2. \(f(x,y)dxdy\)=\(f(x(z,w),y(z,w)|det J| dzdw\)に変換する
    3. 2変数\(z,w\)の同時確率密度関数\(g(z,w)\)は
      \(g(z,w)=f(x(z,w),y(z,w)|det J| \)で求まる。
    4. 実際は\(z,w\)のうち、どちらかは不要な変数なので、片方の変数で積分して、残りの変数についての周囲確率密度関数
      (例えば \(g(z)= \displaystyle \int_{w_1}^{w_2} g(z,w)dw \))
      を計算する。

    ここで、注意点があります。
    Jは
    J=\(\begin{pmatrix}
    \frac{\partial x}{ \partial z} & \frac{\partial x}{\partial w} \\
    \frac{\partial y}{\partial z} & \frac{\partial y}{\partial w}
    \end{pmatrix}\)

    また、\(det J\)は行列式ヤコビアンといいますね。

    A=\(\begin{pmatrix}
    a & b \\
    c & d
    \end{pmatrix}\)
    のとき、行列式ヤコビアン\(det A\)は、
    \(det A=ad-bc\)
    で計算できます。

    計算力が求められる場合がありますが、基本は高校数学でイケます!

    では、実践編に入ります。最初は簡単な式から行きます!

    ➁F分布の確率密度関数の導出

    QCプラネッツでは、5つの事例を関連記事で紹介していきます。ご確認ください。

    1. 簡単な関数の変換事例
    2. t分布の確率密度関数の導出
    3. F分布の確率密度関数の導出
    4. 1変数でZ=XY(積)の場合の変換方法
    5. 1変数でZ=X/Y(商)の場合の変換方法

    今回は、その3「F分布の確率密度関数の導出」です。

    (3)F分布の確率密度関数の導出

    【例題】
    2つの確率変数\(X\),\(Y\)が独立で、\(X\)が自由度mの\(χ^2\)分布、\(Y\)が自由度nの\(χ^2\)分布に従うとき、\(Z\)=\(\frac{\frac{X}{m}}{\frac{Y}{n}}\)で定義される確率変数\(Z\)の確率密度関数を求めよ。

    まず、\(X,Y\)の確率密度関数を定義します。
    \(f(x)=\frac{1}{2^{\frac{m}{2}}Γ(\frac{m}{2})}x^{\frac{m}{2}-1}e^{-\frac{x}{2}}\) (\(x\) ≥ 0)
    \(g(y)=\frac{1}{2^{\frac{n}{2}}Γ(\frac{n}{2})}y^{\frac{n}{2}-1}e^{-\frac{y}{2}}\) (\(y\) ≥ 0)

    関数が一気に難しくなりましたが、大丈夫!

    解いていきましょう。解法は、

    1. \(x=x(z,w),y=(z,w)\)の式を\(z=z(x,y),w=w(x,y)\)の式に直す
    2. \(f(x,y)dxdy\)=\(f(x(z,w),y(z,w)|det J| dzdw\)に変換する
    3. 2変数\(z,w\)の同時確率密度関数\(g(z,w)\)は
      \(g(z,w)=f(x(z,w),y(z,w)|det J| \)で求まる。
    4. 実際は\(z,w\)のうち、どちらかは不要な変数なので、片方の変数で積分して、残りの変数についての周囲確率密度関数
      (例えば \(g(z)= \displaystyle \int_{w_1}^{w_2} g(z,w)dw \))
      を計算する。

    ですから、1つずつ行きましょう。

    (i)\(x=x(z,w),y=(z,w)\)の式を\(z=z(x,y),w=w(x,y)\)の式に直す

    ここで、変換する変数を定義します。

    \(Z\)=\(\frac{\frac{X}{m}}{\frac{Y}{n}}\)、\(W\)=\(Y\)とおく、つまり
    \(Z\)=\(\frac{nX}{mW}\)、\(W\)=\(Y\)とおきます。

    また、範囲は(\(x\) ≥ 0), (\(y\) ≥ 0)
    (\(z\) ≥ 0), (\(w\) ≥ 0)

    \(x=x(z,w),y=y(z,w)\)に直します。
    \(x\)=\(\frac{m}{n}wz\)
    \(y\)=\(w\)

    (ii)\(f(x,y)dxdy\)=\(f(x(z,w),y(z,w)|det J| dzdw\)に変換する

    次に、ヤコビ行列から行列式ヤコビアンを求めます。

    ヤコビ行列Jは
    Jは
    J=\(\begin{pmatrix}
    \frac{\partial x}{ \partial z} & \frac{\partial x}{\partial w} \\
    \frac{\partial y}{\partial z} & \frac{\partial y}{\partial w}
    \end{pmatrix}\)

    J=\(\begin{pmatrix}
    \frac{m}{n}w & \frac{m}{n}z \\
    0 & 1
    \end{pmatrix}\)

    次に行列式ヤコビアンは
    \(det J\)=\(\frac{m}{n}w・1-0・\frac{m}{n}z \)
    =\(\frac{m}{n}w \)
    で計算できます。

    ここまで大丈夫ですね!

    (iii)2変数\(z,w\)の同時確率密度関数\(g(z,w)\)を導出

    代入すると、

    \(f(x,y)dxdy\)=\(f(x(z,w),y(z,w)|det J| dzdw\)

    =\(\frac{1}{2^{\frac{m}{2}}Γ(\frac{m}{2})}(\frac{m}{n}wz)^{\frac{m}{2}-1}e^{-\frac{1}{2}(\frac{m}{n}wz)}\)\(\frac{1}{2^{\frac{n}{2}}Γ(\frac{n}{2})}w^{\frac{n}{2}-1}e^{-\frac{w}{2}}\frac{m}{n}w dzdw\)

    文字式を整理すると、
    =\(\frac{(\frac{m}{n})^{\frac{m}{2}} z^{\frac{m}{2}-1}}
    {2^{\frac{m+n}{2}}Γ(\frac{m}{2})Γ(\frac{n}{2})}\)\(w^{\frac{m+n}{2}-1} e^{-\frac{1}{2}(\frac{m}{n}z+1)w}dzdw\)

    =\(p(z,w)dzdw\)
    =(式1)

    2変数\(z,w\)に関する同時確率密度関数\(p(z,w)dzdw\)が求まりました。
    次に、zについての周囲確率密度関数を求めます。

    なぜなら、\(w=y\)であり、\(w\)は不要な変数だから\(w\)で積分します。

    \( h(z)=\displaystyle \int_{-∞}^{∞} p(z,w)dw \)
    \(z,w\)はともに0以上ですから
    =\( h(z)=\displaystyle \int_{0}^{∞}p(z,w)dw \)
    =\(\frac{(\frac{m}{n})^{\frac{m}{2}} z^{\frac{m}{2}-1}}{2^{\frac{m+n}{2}}Γ(\frac{m}{2})Γ(\frac{n}{2})}\)\(\displaystyle \int_{0}^{∞} w^{\frac{m+n}{2}-1} e^{-\frac{1}{2}(\frac{m}{n}z+1)w} dw \)
    =(式2)

    t分布の確率密度関数導出と同様に、一旦、次の積分を考えます。
     ここから
    \(\displaystyle \int_{0}^{∞}w^p e^{-aw}dw \)=(式3)
    \(t=aw\)とすると、
    \(w=\frac{t}{a}\),\(\frac{dt}{dw}=a\)となり、これを(式3)に代入します。

    (式3)
    =\(\displaystyle \int_{0}^{∞}(\frac{t}{a})^p e^{-t} (\frac{1}{a})dt\)
    =\(\frac{1}{a^{p+1}}\displaystyle \int_{0}^{∞}t^p e^{-t}dt\)
    =\(\frac{Γ(p+1)}{a^{p+1}}\)
    =(式4)

    ここで、Γ関数は
    \(Γ(p+1)= \displaystyle \int_{0}^{∞}t^p e^{-t}dt\)
    です。

    (式2)に代入するため、(式4)の文字を置き換えます。
    \(p=\frac{m+n}{2}-1\)
    \(a=\frac{1}{2}(1+\frac{m}{n}z)\)
    とおいて、(式1)に代入します。

    (式2)
    =\(\frac{(\frac{m}{n})^{\frac{m}{2}} z^{\frac{m}{2}-1}}{2^{\frac{m+n}{2}}Γ(\frac{m}{2})Γ(\frac{n}{2})}\)\(\displaystyle \int_{0}^{∞} w^{\frac{m+n}{2}-1} e^{-\frac{1}{2}(\frac{m}{n}z+1)w} dw \)
    =\(\frac{(\frac{m}{n})^{\frac{m}{2}} z^{\frac{m}{2}-1}}{2^{\frac{m+n}{2}}Γ(\frac{m}{2})Γ(\frac{n}{2})}\)\(\displaystyle \int_{0}^{∞} (\frac{t}{a})^p・e^{-a\frac{t}{a}} \frac{1}{a}dt\)
    =\(\frac{(\frac{m}{n})^{\frac{m}{2}} z^{\frac{m}{2}-1}}{2^{\frac{m+n}{2}}Γ(\frac{m}{2})Γ(\frac{n}{2})}\)\(\frac{1}{a^{p+1}}\displaystyle \int_{0}^{∞} t^p・e^{-t}dt\)
    =\(\frac{(\frac{m}{n})^{\frac{m}{2}} z^{\frac{m}{2}-1}}{2^{\frac{m+n}{2}}Γ(\frac{m}{2})Γ(\frac{n}{2})}\)\(\frac{Γ(p+1)}{a^{p+1}}\)
    =(式5)

    (式5)に対して、
    \(p=\frac{m+n}{2}-1\)
    \(a=\frac{1}{2}(1+\frac{m}{n}z)\)
    から、\(p,a\)を\(m,n,z\)の式に戻します。

    (式5)
    =\(\frac{(\frac{m}{n})^{\frac{m}{2}} z^{\frac{m}{2}-1}}{2^{\frac{m+n}{2}}Γ(\frac{m}{2})Γ(\frac{n}{2})}\)\(\frac{Γ(\frac{m+n}{2})}{(\frac{1}{2}(1+\frac{m}{n}z))^{\frac{m+n}{2}}}\)
    ここで、\(n,2, Γ(\frac{m+n}{2}),Γ(\frac{m}{2}),Γ(\frac{n}{2})\)に注目して変形すると

    =\(\frac{m^{\frac{m}{2}} n^{\frac{n}{2}}}{B(\frac{m}{2},\frac{n}{2})}\frac{z^{\frac{m}{2}-1}}{(mz+n)^{\frac{m+n}{2}}}\)
    となります。

    なんじゃこりゃ!な式ですが、
    使い勝手のよいF分布の式なんです!
    まとめると、
    \(h(z)=\frac{m^{\frac{m}{2}} n^{\frac{n}{2}}}{B(\frac{m}{2},\frac{n}{2})}\frac{z^{\frac{m}{2}-1}}{(mz+n)^{\frac{m+n}{2}}}\)
    が、自由度(\(m,n\))のF分布の確率密度関数となります。
    F分布は、χ2乗分布の関数同士の変数の比から求められます。確かに分散比はF分布使いますよね!!
    F分布、χ2乗分布、正規分布の関係が数式でつながりました。
    今回の\(f(x,y)\)はかなり式が難しいですが、解法は1つでOKで、これが解けたら自信を持ってください。
    簡単だ! 解けるぞ!と自信持ってください!

    いろいろな関数を使って、確率変数の変換を見て慣れていきましょう!

    本記事の内容は、ほぼ高校数学で解けましたね!

    まとめ

    「2変数の確率変数の変換がよくわかる(F分布の確率密度関数の導出)」を解説しました。

    • ①2変数の確率変数の変換の基本をマスターする
    • ➁F分布の確率密度関数の導出

  • t分布の確率密度関数の導出がよくわかる

    t分布の確率密度関数の導出がよくわかる

    「確率変数の変換が、わからない、解けない?」、「t分布、F分布の確率密度関数への導出がわからない」と困っていませんか?

    こういう疑問に答えます。

    本記事のテーマ

    2変数の確率変数の変換がよくわかる(t分布の確率密度関数の導出)
    • ①2変数の確率変数の変換の基本をマスターする
    • ➁ t分布の確率密度関数の導出
    [themoneytizer id=”105233-2″]

    QCに必要な数学問題集をを販売します!

    QC検定®1級合格したい方、QCに必要な数学をしっかり学びたい方におススメです。
    QC検定®1級、2級、統計検定2級以上の数学スキルを磨くのに苦戦していませんか? 広大すぎる統計学、微分積分からQC・統計に勝てるための60題に厳選した問題集を紹介します。是非ご購入いただき、勉強してスキルを高めましょう。

    ①2変数の確率変数の変換の基本をマスターする

    確率変数の変換は高校数学でほぼイケます!大丈夫!

    確率変数の変換は難しいけど、
    理解しないと、正規分布、t分布、χ2乗分布、F分布との関係が理解できないから困っている!
    確率変数の変換は高校数学でほぼイケます!大丈夫!
    1つ条件があります!

    それは、

    公式暗記より、実演でマスターした方が速い!
    1つ解法で解ける解法で、たくさんの例題を見る方がマスターは速い!

    慣れてきたら、公式を見ましょう。

    2変数の確率変数の変換の基本をマスターする

    関連記事に2変数の確率変数の変換の求め方をわかりやすく解説しています。

    【まとめ】2変数の確率変数の変換がよくわかる
    2変数の確率変数の変換が計算できますか?本記事では,理解が難しい公式をそのまま使わずに,高校数学で十分解ける解法を解説します。今回は変換したいパターンをすべてを解説!教科書よりわかりやすく、 ほぼ高校数学でイケる方法で解説! t分布、F分布の確率密度関数を導出したい方は必読な記事です。

    同じ1つの解法でイケますので、ご安心ください。

    2変数の確率変数の変換の求め方

    1変数の確率変数の変換方法と同様に決まった解法があります。

    変数\(x,y\)を変数\(z,w\)に変換するとします。

    1. \(x=x(z,w),y=(z,w)\)の式を\(z=z(x,y),w=w(x,y)\)の式に直す
    2. \(f(x,y)dxdy\)=\(f(x(z,w),y(z,w)|det J| dzdw\)に変換する
    3. 2変数\(z,w\)の同時確率密度関数\(g(z,w)\)は
      \(g(z,w)=f(x(z,w),y(z,w)|det J| \)で求まる。
    4. 実際は\(z,w\)のうち、どちらかは不要な変数なので、片方の変数で積分して、残りの変数についての周囲確率密度関数
      (例えば \(g(z)= \displaystyle \int_{w_1}^{w_2} g(z,w)dw \))
      を計算する。

    ここで、注意点があります。
    Jは
    J=\(\begin{pmatrix}
    \frac{\partial x}{ \partial z} & \frac{\partial x}{\partial w} \\
    \frac{\partial y}{\partial z} & \frac{\partial y}{\partial w}
    \end{pmatrix}\)

    また、\(det J\)は行列式ヤコビアンといいますね。

    A=\(\begin{pmatrix}
    a & b \\
    c & d
    \end{pmatrix}\)
    のとき、行列式ヤコビアン\(det A\)は、
    \(det A=ad-bc\)
    で計算できます。

    計算力が求められる場合がありますが、基本は高校数学でイケます!

    では、実践編に入ります。最初は簡単な式から行きます!

    ➁ t分布の確率密度関数の導出

    QCプラネッツでは、5つの事例を関連記事で紹介していきます。ご確認ください。

    1. 簡単な関数の変換事例
    2. t分布の確率密度関数の導出
    3. F分布の確率密度関数の導出
    4. 1変数でZ=XY(積)の場合の変換方法
    5. 1変数でZ=X/Y(商)の場合の変換方法

    今回は、その2「t分布の確率密度関数の導出」です。

    (2) t分布の確率密度関数の導出

    【例題】
    2つの確率変数\(X\),\(Y\)が独立で、\(X\)が自由度nの\(χ^2\)分布、\(Y\)が正規分布N(0,\(1^2\))に従うとき、\(Z\)=\(\frac{Y}{\sqrt{\frac{X}{n}}}\)で定義される確率変数\(Z\)の確率密度関数を求めよ。

    まず、\(X,Y\)の確率密度関数を定義します。
    \(f(x)=\frac{1}{2^{\frac{n}{2}}Γ(\frac{n}{2})}x^{\frac{n}{2}-1}e^{-\frac{x}{2}}\) (\(x\) ≥ 0)
    \(g(y)=\frac{1}{2π}e^{-\frac{1}{2}y^2}\) (-∞ ≤ \(x\) ≤ ∞)

    関数が一気に難しくなりましたが、大丈夫!

    解いていきましょう。解法は、

    1. \(x=x(z,w),y=(z,w)\)の式を\(z=z(x,y),w=w(x,y)\)の式に直す
    2. \(f(x,y)dxdy\)=\(f(x(z,w),y(z,w)|det J| dzdw\)に変換する
    3. 2変数\(z,w\)の同時確率密度関数\(g(z,w)\)は
      \(g(z,w)=f(x(z,w),y(z,w)|det J| \)で求まる。
    4. 実際は\(z,w\)のうち、どちらかは不要な変数なので、片方の変数で積分して、残りの変数についての周囲確率密度関数
      (例えば \(g(z)= \displaystyle \int_{w_1}^{w_2} g(z,w)dw \))
      を計算する。

    ですから、1つずつ行きましょう。

    (i)\(x=x(z,w),y=(z,w)\)の式を\(z=z(x,y),w=w(x,y)\)の式に直す

    ここで、変換する変数を定義します。

    \(Z\)=\(\frac{Y}{\sqrt{\frac{X}{n}}}\)
    \(W\)=\(X\)

    \(x=x(z,w),y=y(z,w)\)に直します。
    \(x\)=\(w\)
    \(y\)=\(z\sqrt{\frac{w}{n}}\)

    (ii)\(f(x,y)dxdy\)=\(f(x(z,w),y(z,w)|det J| dzdw\)に変換する

    次に、ヤコビ行列から行列式ヤコビアンを求めます。

    ヤコビ行列Jは
    Jは
    J=\(\begin{pmatrix}
    \frac{\partial x}{ \partial z} & \frac{\partial x}{\partial w} \\
    \frac{\partial y}{\partial z} & \frac{\partial y}{\partial w}
    \end{pmatrix}\)

    J=\(\begin{pmatrix}
    0 & 1 \\
    \sqrt{\frac{w}{n}}& \frac{1}{2\sqrt{w}}
    \end{pmatrix}\)

    次に行列式ヤコビアンは
    \(det J\)=\(0・\frac{1}{2\sqrt{w}}\)-1・\(\sqrt{\frac{w}{n}}\)
    =\(-\sqrt{\frac{w}{n}}\)
    で計算できます。

    ここまで大丈夫ですね!

    (iii)2変数\(z,w\)の同時確率密度関数\(g(z,w)\)を導出

    代入すると、

    \(f(x,y)dxdy\)=\(f(x(z,w),y(z,w)|det J| dzdw\)
    =\(\frac{1}{2^{\frac{n}{2}}Γ(\frac{n}{2})}w^{\frac{n}{2}-1}e^{-\frac{w}{2}}\)\(\frac{1}{2π}e^{-\frac{1}{2}z^2\frac{w}{n}}dzdw\)
    (|det J|=\(\frac{w}{n}\))

    さらに変形していきます。
    =\(\frac{1}{\sqrt{2nπ}}\frac{1}{2^{\frac{n}{2}}Γ(\frac{n}{2})}w^{\frac{n}{2}-1}e^{-\frac{w}{2}(1+\frac{z^2}{w})}dzdw\)
    =\(p(z,w)\)

    よって、同時確率密度関数\(p(z,w)\)は
    \(p(z,w)= \frac{1}{\sqrt{2nπ}}\frac{1}{2^{\frac{n}{2}}Γ(\frac{n}{2})}w^{\frac{n}{2}-1}e^{-\frac{w}{2}(1+\frac{z^2}{w})}dzdw\)
    と計算できます。

    なお、ここから\(z\)または、\(w\)だけの周辺確率分布関数が必要なら、不要な変数について積分が必要となります。

    今回は\(h(z)\)と\(z\)についての関数が欲しいので、\(p(z,w)\)について\(w\)で積分します。
    \( h(z)=\displaystyle \int_{-∞}^{∞} p(z,w)dw \)
    =\(\frac{1}{\sqrt{2nπ}}\frac{1}{2^{\frac{n}{2}}Γ(\frac{n}{2})}\displaystyle \int_{0}^{∞}w^{\frac{n-1}{2}}e^{-\frac{w}{2}(1+\frac{z^2}{n})}dw \)
    =(式1)

    ここで、\(w=x\)はもともと\(x\) ≤ 0ですから、積分区間を[0,∞]に変えています。

    次に、\(\displaystyle \int_{0}^{∞}w^{\frac{n-1}{2}}e^{-\frac{w}{2}(1+\frac{z^2}{n})}dw \)を計算します。よく見るとΓ関数にもっていけそうです。

    一旦、次の積分を考えます。
    \(\displaystyle \int_{0}^{∞}w^p e^{-aw}dw \)=(式2)
    \(t=aw\)とすると、
    \(w=\frac{t}{a}\),\(\frac{dt}{dw}=a\)となり、これを(式2)に代入します。

    (式2)
    =\(\displaystyle \int_{0}^{∞}(\frac{t}{a})^p e^{-t} (\frac{1}{a})dt\)
    =\(\frac{1}{a^{p+1}}\displaystyle \int_{0}^{∞}t^p e^{-t}dt\)
    =\(\frac{Γ(p+1)}{a^{p+1}}\)
    =(式3)

    ここで、Γ関数は
    \(Γ(p+1)= \displaystyle \int_{0}^{∞}t^p e^{-t}dt\)\)
    です。

    (式1)に代入するため、(式3)の文字を置き換えます。
    \(p=\frac{n-1}{2}\)
    \(a=\frac{1}{2}(1+\frac{z^2}{n})\)
    とおいて、(式1)に代入します。

    (式1)
    =\(\frac{1}{\sqrt{2nπ}}\frac{1}{2^{\frac{n}{2}}Γ(\frac{n}{2})}\displaystyle \int_{0}^{∞}w^{\frac{n-1}{2}}e^{-\frac{w}{2}(1+\frac{z^2}{n})}dw \)

    =\(\frac{1}{\sqrt{2nπ}}\frac{1}{2^{\frac{n}{2}Γ(\frac{n}{2})}}\)\(\frac{Γ(\frac{n+1}{2})}{(\frac{1}{2}(1+\frac{z^2}{n})^{\frac{n+1}{2}})}\)
    =(式4)

    さらに、Γの式が複数あるので、ベータ関数でまとめられないか?を見ましょう。

    普通気が付かないのですが、よくみると
    \(\sqrt{π}\)=Γ\((\frac{1}{2})\)
    とわかります。これを(式4)に代入します。

    (式4)
    =\(\frac{1}{\sqrt{2nπ}}\frac{1}{2^{\frac{n}{2}Γ(\frac{n}{2})}}\)\(\frac{Γ(\frac{n+1}{2})}{(\frac{1}{2}(1+\frac{z^2}{n})^{\frac{n+1}{2}})}\)
    =\(\frac{1}{\sqrt{π}}B(\frac{1}{2},\frac{n}{2})(1+\frac{z^2}{n})^{-\frac{n+1}{2}}\)
    =(式5)

    まとめると、
    \(h(z)= \frac{1}{\sqrt{π}}B(\frac{1}{2},\frac{n}{2})(1+\frac{z^2}{n})^{-\frac{n+1}{2}}\)
    となり、これが自由度nのt分布の確率密度関数となります。
    t分布は、χ2乗分布を自由度で割った平方根と、正規分布との比から確率密度関数が求められるのは面白いですね。
    t分布、χ2乗分布、正規分布の関係が数式でつながりました。
    今回の\(f(x,y)\)はかなり式が難しいですが、解法は1つでOKで、これが解けたら自信を持ってください。
    簡単だ! 解けるぞ!と自信持ってください!

    いろいろな関数を使って、確率変数の変換を見て慣れていきましょう!

    本記事の内容は、ほぼ高校数学で解けましたね!

    まとめ

    「2変数の確率変数の変換がよくわかる(t分布の確率密度関数の導出)」を解説しました。

    • ①2変数の確率変数の変換の基本をマスターする
    • ➁ t分布の確率密度関数の導出

  • 2変数の確率変数の変換がよくわかる(事例1)

    2変数の確率変数の変換がよくわかる(事例1)

    「確率変数の変換が、わからない、解けない?」、「t分布、F分布の確率密度関数への導出がわからない」と困っていませんか?

    こういう疑問に答えます。

    本記事のテーマ

    2変数の確率変数の変換がよくわかる(事例1)
    • ①2変数の確率変数の変換の基本をマスターする
    • ➁実例を使って理解する!
    [themoneytizer id=”105233-2″]

    QCに必要な数学問題集をを販売します!

    QC検定®1級合格したい方、QCに必要な数学をしっかり学びたい方におススメです。
    QC検定®1級、2級、統計検定2級以上の数学スキルを磨くのに苦戦していませんか? 広大すぎる統計学、微分積分からQC・統計に勝てるための60題に厳選した問題集を紹介します。是非ご購入いただき、勉強してスキルを高めましょう。

    ①2変数の確率変数の変換の基本をマスターする

    確率変数の変換は高校数学でほぼイケます!大丈夫!

    確率変数の変換は難しいけど、
    理解しないと、正規分布、t分布、χ2乗分布、F分布との関係が理解できないから困っている!
    確率変数の変換は高校数学でほぼイケます!大丈夫!
    1つ条件があります!

    それは、

    公式暗記より、実演でマスターした方が速い!
    1つ解法で解ける解法で、たくさんの例題を見る方がマスターは速い!

    慣れてきたら、公式を見ましょう。

    2変数の確率変数の変換の基本をマスターする

    関連記事に2変数の確率変数の変換の求め方をわかりやすく解説しています。

    【まとめ】2変数の確率変数の変換がよくわかる
    2変数の確率変数の変換が計算できますか?本記事では,理解が難しい公式をそのまま使わずに,高校数学で十分解ける解法を解説します。今回は変換したいパターンをすべてを解説!教科書よりわかりやすく、 ほぼ高校数学でイケる方法で解説! t分布、F分布の確率密度関数を導出したい方は必読な記事です。

    同じ1つの解法でイケますので、ご安心ください。

    2変数の確率変数の変換の求め方

    1変数の確率変数の変換方法と同様に決まった解法があります。

    変数\(x,y\)を変数\(z,w\)に変換するとします。

    1. \(x=x(z,w),y=(z,w)\)の式を\(z=z(x,y),w=w(x,y)\)の式に直す
    2. \(f(x,y)dxdy\)=\(f(x(z,w),y(z,w)|det J| dzdw\)に変換する
    3. 2変数\(z,w\)の同時確率密度関数\(g(z,w)\)は
      \(g(z,w)=f(x(z,w),y(z,w)|det J| \)で求まる。
    4. 実際は\(z,w\)のうち、どちらかは不要な変数なので、片方の変数で積分して、残りの変数についての周囲確率密度関数
      (例えば \(g(z)= \displaystyle \int_{w_1}^{w_2} g(z,w)dw \))
      を計算する。

    ここで、注意点があります。
    Jは
    J=\(\begin{pmatrix}
    \frac{\partial x}{ \partial z} & \frac{\partial x}{\partial w} \\
    \frac{\partial y}{\partial z} & \frac{\partial y}{\partial w}
    \end{pmatrix}\)

    また、\(det J\)は行列式ヤコビアンといいますね。

    A=\(\begin{pmatrix}
    a & b \\
    c & d
    \end{pmatrix}\)
    のとき、行列式ヤコビアン\(det A\)は、
    \(det A=ad-bc\)
    で計算できます。

    計算力が求められる場合がありますが、基本は高校数学でイケます!

    では、実践編に入ります。最初は簡単な式から行きます!

    ➁実例を使って理解する!

    QCプラネッツでは、5つの事例を関連記事で紹介していきます。ご確認ください。

    1. 簡単な関数の変換事例
    2. t分布の確率密度関数の導出
    3. F分布の確率密度関数の導出
    4. 1変数でZ=XY(積)の場合の変換方法
    5. 1変数でZ=X/Y(商)の場合の変換方法

    今回は、その1「簡単な関数の変換事例」です。

    (1) 簡単な関数の変換事例

    【例題】
    確率変数(\(X,Y\))の同時確率密度関数\(f(x,y)\)が
    \(f(x,y)\)=\(\frac{1}{2}xy^2\) (0 ≤ \(x\) ≤ 2, 0 ≤ \(y\) ≤ 1)
    に対して、確率変数\(Z,W\)を
    \(Z=2X+Y\)
    \(W=X-2Y\)
    と定義した場合の、確率変数\(Z,W\)についての同時確率密度関数\(g(z,w)\)を求めよ。

    解いていきましょう。解法は、

    1. \(x=x(z,w),y=(z,w)\)の式を\(z=z(x,y),w=w(x,y)\)の式に直す
    2. \(f(x,y)dxdy\)=\(f(x(z,w),y(z,w)|det J| dzdw\)に変換する
    3. 2変数\(z,w\)の同時確率密度関数\(g(z,w)\)は
      \(g(z,w)=f(x(z,w),y(z,w)|det J| \)で求まる。
    4. 実際は\(z,w\)のうち、どちらかは不要な変数なので、片方の変数で積分して、残りの変数についての周囲確率密度関数
      (例えば \(g(z)= \displaystyle \int_{w_1}^{w_2} g(z,w)dw \))
      を計算する。

    ですから、1つずつ行きましょう。

    (i)\(x=x(z,w),y=(z,w)\)の式を\(z=z(x,y),w=w(x,y)\)の式に直す

    \(x=x(z,w),y=y(z,w)\)に直します。
    \(x\)=\(\frac{1}{5}(2z+w)\)
    \(y\)=\(\frac{1}{5}(z-2w)\)
    連立方程式から求められます。

    (ii)\(f(x,y)dxdy\)=\(f(x(z,w),y(z,w)|det J| dzdw\)に変換する

    次に、ヤコビアン行列から行列式ヤコビアンを求めます。

    \(det J\)=\(\frac{2}{5}・(-\frac{2}{5})\)-\(\frac{1}{5}・\frac{1}{5}\)
    =\(-\frac{1}{5}\)
    で計算できます。

    (iii)2変数\(z,w\)の同時確率密度関数\(g(z,w)\)を導出

    代入すると、

    \(f(x,y)dxdy\)=\(f(x(z,w),y(z,w)|det J| dzdw\)
    =\(\frac{1}{2} × \frac{1}{5}(2z+w) ×\frac{1}{25}(z-2w)^2 ×|-\frac{1}{5}| dzdw\)
    =\(\frac{1}{1250} (2z+w) (z-2w)^2 dzdw\)

    よって、同時確率密度関数\(g(z,w)\)は
    \(g(z,w)= \frac{1}{1250} (2z+w) (z-2w)^2 \)
    と計算できます。

    なお、ここから\(z\)または、\(w\)だけの周辺確率分布関数が必要なら、不要な変数について積分が必要となります。

    今回の\(f(x,y)\)は簡単な式ですが、正規分布やχ2乗分布の確率分布関数でも同様の解法で変換していきます!
    簡単だ! 解けるぞ!と自信持ってください!

    いろいろな関数を使って、確率変数の変換を見て慣れていきましょう!

    本記事の内容は、ほぼ高校数学で解けましたね!

    まとめ

    「2変数の確率変数の変換がよくわかる(事例1)」を解説しました。

    • ①2変数の確率変数の変換の基本をマスターする
    • ➁実例を使って理解する!

  • 【まとめ】2変数の確率変数の変換がよくわかる

    【まとめ】2変数の確率変数の変換がよくわかる

    「確率変数の変換が、わからない、解けない?」、「t分布、F分布の確率密度関数への導出がわからない」と困っていませんか?

    こういう疑問に答えます。

    本記事のテーマ

    【まとめ】2変数の確率変数の変換がよくわかる
    • ①1変数の確率変数の変換の流れをまず理解する
    • ➁2変数の確率変数の変換の流れを理解する
    • ➂実例をご紹介
    [themoneytizer id=”105233-2″]

    QCに必要な数学問題集をを販売します!

    QC検定®1級合格したい方、QCに必要な数学をしっかり学びたい方におススメです。
    QC検定®1級、2級、統計検定2級以上の数学スキルを磨くのに苦戦していませんか? 広大すぎる統計学、微分積分からQC・統計に勝てるための60題に厳選した問題集を紹介します。是非ご購入いただき、勉強してスキルを高めましょう。

    ①1変数の確率変数の変換の流れをまず理解する

    確率変数の変換は高校数学でほぼイケます!大丈夫!

    確率変数の変換は難しいけど、
    理解しないと、正規分布、t分布、χ2乗分布、F分布との関係が理解できないから困っている!
    確率変数の変換は高校数学でほぼイケます!大丈夫!
    1つ条件があります!

    それは、

    公式暗記より、実演でマスターした方が速い!
    1つ解法で解ける解法で、たくさんの例題を見る方がマスターは速い!

    慣れてきたら、公式を見ましょう。

    1変数の確率変数の変換の流れをまず理解する

    関連記事に1変数の確率変数の変換の求め方をわかりやすく解説しています。

    【まとめ】1変数の確率変数の変換がよくわかる
    1変数の確率変数の変換が計算できますか?本記事では,理解が難しい公式をそのまま使わずに,高校数学で十分解ける解法を解説します。今回は変換したいパターンをすべてを解説!教科書よりわかりやすく、ほぼ高校数学でイケる方法で解説! 確率変数の変換が計算したい方は必読な記事です。

    1変数の確率変数の変換の求め方

    1. \(y=x\)の式を\(x=y\)の式に直す
    2. \(f(x)\)の\(x\)に\(y\)の式をそのまま代入する
    3. 積分の式から\(x\)⇒\(y\)に変形する
      \(dx=\frac{dx}{dy}dy\)と変形(これは高校数学レベル)
    4. 積分の式から\(x\)⇒\(y\)に変化するが、
      \( \displaystyle \int_{x_1}^{x_2} f(x)dx \) =\(\displaystyle \int_{y_1}^{y_2} f(yの式) \frac{dx}{dy}dy \)
    5. 確率密度関数\(g(y)\)は(右辺)の積分から
      \(\displaystyle \int_{y_1}^{y_2} g(y) dy \)=\(\displaystyle \int_{y_1}^{y_2} f(yの式) \frac{dx}{dy}dy \)

    ですね。

    ただし、これは、

    Z=X+YやZ=X-Yのような和差の変換なら使いやすいけど
    Z=XY,Z=X/Yは使いにくい

    ので、Z=XY,Z=X/Yの変換は、2変数の確率変数の変換から攻めます!

    ➁2変数の確率変数の変換の流れを理解する

    取り上げる事例5つ

    QCプラネッツでは2変数の確率変数の変換の実例を

    1. 簡単な関数の変換事例
    2. t分布の確率密度関数の導出
    3. F分布の確率密度関数の導出
    4. 1変数でZ=XY(積)の場合の変換方法
    5. 1変数でZ=X/Y(商)の場合の変換方法

    を取り上げます。

    1変数と2変数の変換方法がわかれば、
    正規分布からχ2乗分布、t分布、F分布の確率密度関数が求められる!

    是非、マスターしましょう! 

    基本的な流れ

    大事な5つを取り上げますが、

    解き方は1つだから、安心して!
    しかも、途中経過は一切端折らないから!

    では、解法の流れを解説します。

    2変数の確率変数の変換の解法の流れ

    変数\(x,y\)を変数\(z,w\)に変換するとします。

    1. \(x=x(z,w),y=(z,w)\)の式を\(z=z(x,y),w=w(x,y)\)の式に直す
    2. \(f(x,y)dxdy\)=\(f(x(z,w),y(z,w)|det J| dzdw\)に変換する
    3. 2変数\(z,w\)の同時確率密度関数\(g(z,w)\)は
      \(g(z,w)=f(x(z,w),y(z,w)|det J| \)で求まる。
    4. 実際は\(z,w\)のうち、どちらかは不要な変数なので、片方の変数で積分して、残りの変数についての周囲確率密度関数
      (例えば \(g(z)= \displaystyle \int_{w_1}^{w_2} g(z,w)dw \))
      を計算する。

    ここで、注意点があります。
    Jは
    J=\(\begin{pmatrix}
    \frac{\partial x}{ \partial z} & \frac{\partial x}{\partial w} \\
    \frac{\partial y}{\partial z} & \frac{\partial y}{\partial w}
    \end{pmatrix}\)

    また、\(det J\)は行列式ヤコビアンといいますね。

    A=\(\begin{pmatrix}
    a & b \\
    c & d
    \end{pmatrix}\)
    のとき、行列式ヤコビアン\(det A\)は、
    \(det A=ad-bc\)
    で計算できます。

    計算力が求められる場合がありますが、基本は高校数学でイケます!

    ➂実例をご紹介

    5つの事例を関連記事で紹介していきます。ご確認ください。

    1. 簡単な関数の変換事例
    2. t分布の確率密度関数の導出
    3. F分布の確率密度関数の導出
    4. 1変数でZ=XY(積)の場合の変換方法
    5. 1変数でZ=X/Y(商)の場合の変換方法

    (1) 簡単な関数の変換事例

    2変数の確率変数の変換がよくわかる(事例1)
    2変数の確率変数の変換が計算できますか?本記事では,理解が難しい公式をそのまま使わずに,高校数学で十分解ける解法を解説します。今回は2変数の簡単な関数を例に、教科書よりわかりやすく、 ほぼ高校数学でイケる方法で解説! t分布、F分布の確率密度関数を導出したい方は必読な記事です。

    (2) t分布の確率密度関数の導出

    t分布の確率密度関数の導出がよくわかる
    t分布の確率密度関数は導出できますか?本記事では、2つの確率変数の変換の解法パターンでわかりやすく丁寧にt分布の確率密度関数を導出します。統計学を学んでいる方は必読です。

    (3) F分布の確率密度関数の導出

    F分布の確率密度関数の導出がよくわかる
    F分布の確率密度関数は導出できますか?本記事では、2つの確率変数の変換の解法パターンでわかりやすく丁寧にF分布の確率密度関数を導出します。統計学を学んでいる方は必読です。

    (4) 1変数でZ=XY(積)の場合の変換方法

    2変数の確率変数の変換がよくわかる(1変数の積の場合)
    1変数の確率変数の変換が計算できますか?本記事では,理解が難しい公式をそのまま使わずに,高校数学で十分解ける解法を解説します。今回は2変数の変換方法を使って、1変数Zの積Z=XYの例を、教科書よりわかりやすく、ほぼ高校数学でイケる方法で解説!

    (5) 変数でZ=X/Y(商)の場合の変換方法

    2変数の確率変数の変換がよくわかる(Z=X/Y商の場合)
    1変数の確率変数の変換が計算できますか?本記事では,理解が難しい公式をそのまま使わずに,高校数学で十分解ける解法を解説します。今回は2変数の変換方法を使って、1変数Zの商Z=X/Yの例を、教科書よりわかりやすく、ほぼ高校数学でイケる方法で解説!

    ここまで理解できたら、確率密度関数を自由自在に操れるようになります!

    いろいろな関数を使って、確率変数の変換を見て慣れていきましょう!

    本記事の内容は、ほぼ高校数学で解けましたね!

    まとめ

    「【まとめ】2変数の確率変数の変換がよくわかる」を解説しました。

    • ①1変数の確率変数の変換の流れをまず理解する
    • ➁2変数の確率変数の変換の流れを理解する
    • ➂実例をご紹介

  • 【まとめ】1変数の確率変数の変換がよくわかる

    【まとめ】1変数の確率変数の変換がよくわかる

    「確率変数の変換が、わからない、解けない?」と困っていませんか?

    こういう疑問に答えます。

    本記事のテーマ

    【まとめ】1変数の確率変数の変換がよくわかる
    \(Y=aX+b\)、\(Y=X^2\)、\(Y^2=X\)の等の変換が簡単に計算できます!
    [themoneytizer id=”105233-2″]

    QCに必要な数学問題集をを販売します!

    QC検定®1級合格したい方、QCに必要な数学をしっかり学びたい方におススメです。
    QC検定®1級、2級、統計検定2級以上の数学スキルを磨くのに苦戦していませんか? 広大すぎる統計学、微分積分からQC・統計に勝てるための60題に厳選した問題集を紹介します。是非ご購入いただき、勉強してスキルを高めましょう。

    1つの解法で解けます! 大丈夫です!ご安心ください。

    • ①確率変数の変換は高校数学でほぼイケます!大丈夫!
    • ➁公式見ても理解しにくいから無視していい!
    • ➂確率変数の変換の事例紹介
    • ➃実例を使って理解する!

    「➃実例を使って理解する!」の例題を挙げます。さっと解けるかどうか確認ください。簡単な関数で練習しましょう。

    確率変数\(X\)が確率密度関数
    \(f(x)=\frac{3}{4}(1-x^2)\) (-1 ≥ \(x\) ≥ 1)
    で定義される場合、
    以下の確率変数\(Y\)に変換するときの、
    \(Y\)が従う確率密度関数\(g(y)\)を求めよ。
    (1) \(Y=3X+2\)
    (2) \(Y=X^2\)
    (3) \(Y^2=X\) (0 ≥ \(x\) ≥ 1)
    (4) \(logY=X\)

    さっと解けますか?自信がなければ、この記事を読み進めてください。

    ①確率変数の変換は高校数学でほぼイケます!大丈夫!

    確率変数の変換は難しいけど、
    理解しないと、正規分布、t分布、χ2乗分布、F分布との関係が理解できないから困っている!
    確率変数の変換は高校数学でほぼイケます!大丈夫!
    1つ条件があります!

    それは、

    公式暗記より、実演でマスターした方が速い!
    1つ解法で解ける解法で、たくさんの例題を見る方がマスターは速い!

    慣れてきたら、公式を見ましょう。

    ➁公式見ても理解しにくいから無視していい!

    公式(紹介だけ)

    確率変数の変換は、正規分布、t分布、χ2乗分布、F分布との関係を理解する上で大事ですが、わかりにくい!

    XとYが\(Y=h(X)\)となる。Xは確率密度関数\(f(x)\)に従うとき、Yの確率密度関数\(g(y)\)は、
    \(g(y)\)=\(\frac{d}{dy}F_y(y)\)=\(\frac{d}{dy}F_X (h^{-1}(y))\)=\(\frac{d}{dx}F_X(x)|_{h^{-1}(y)}\frac{dh^{-1}(y)}{dy}\)=\(f(h^{-1}(y))\frac{dh^{-1}(y)}{dy}\)

    確かに、満点の回答なのですが、

    公式理解できますか?
    何じゃこりゃ!
    と思う方が普通でしょうね。
    QCプラネッツは理解できません。。。
    なので、どうしようか? と工夫します!

    公式が理解できない理由

    何度も見ても理解できない理由を挙げると

    1. \(f(x)\)と\(g(y)\)の関係が見えない。
    2. 単にX⇒Yの変換だからx=をy=に変えるだけとしたいけど、よくわからない公式になっている
    3. \(Y=aX+b\)、\(Y=X^2\)、\(Y^2=X\)などの例題が教科書にあるが公式が理解できないから計算しても何をやっているのかがわからない

    と、QCプラネッツも何度も諦めていました。

    公式から勉強する方法を変えてみる!

    でも、発想を変えて

    公式は後でいいから、自分で理解できる解き方で正解すればいいじゃん!

    として、QCプラネッツのオリジナルな解法を紹介します。

    慣れてから公式を見て、理解できればOK

    としましょう。

    ➂確率変数の変換の事例紹介

    以下の例を関連記事で解説しています。

    1. 1次式(\(Y=aX+b\))
    2. 2次式(\(Y=X^2\))
    3. 0.5次式(\(Y^2=X\))
    4. 応用事例(3次式やlogがある場合)

    1つずつ紹介します。

    1次式(\(Y=aX+b\))

    1変数の確率変数の変換がよくわかる(1次式編)
    1変数の確率変数の変換が計算できますか?本記事では,理解が難しい公式をそのまま使わずに,高校数学で十分解ける解法を解説します。今回は1次式y=ax+b型を解説!確率変数の変換が計算したい方は必読な記事です。

    2次式(\(Y=X^2\))

    1変数の確率変数の変換がよくわかる(2次式編)
    1変数の確率変数の変換が計算できますか?本記事では,理解が難しい公式をそのまま使わずに,高校数学で十分解ける解法を解説します。今回は1次式y=x^2型を解説!正規分布からχ2乗分布に変換する大事な問いを、教科書よりわかりやすく、ほぼ高校数学でイケる方法で解説!確率変数の変換が計算したい方は必読な記事です。

    0.5次式(\(Y^2=X\))

    1変数の確率変数の変換がよくわかる(0.5次式編)
    1変数の確率変数の変換が計算できますか?本記事では,理解が難しい公式をそのまま使わずに,高校数学で十分解ける解法を解説します。今回は0.5次式y^2=x型を解説!正規分布からχ2乗分布に変換する大事な問いを、教科書よりわかりやすく、ほぼ高校数学でイケる方法で解説! 確率変数の変換が計算したい方は必読な記事です。

    応用事例(3次式やlogがある場合)

    1変数の確率変数の変換がよくわかる(応用編)
    1変数の確率変数の変換が計算できますか?本記事では,理解が難しい公式をそのまま使わずに,高校数学で十分解ける解法を解説します。今回は3次式や指数対数型を解説!正規分布から対数正規分布に導出できる方法など教科書よりわかりやすく、ほぼ高校数学でイケる方法で解説! 確率変数の変換が計算したい方は必読な記事です。

    4つ関連記事がありますが、解き方はすべて1つでOKです。ご安心ください。

    ➃実例を使って理解する!

    確率変数の変換をマスターする例題

    では、本当に解けるかどうかを例題で確認しましょう!

    確率変数\(X\)が確率密度関数
    \(f(x)=\frac{3}{4}(1-x^2)\) (-1 ≥ \(x\) ≥ 1)
    で定義される場合、
    以下の確率変数\(Y\)に変換するときの、
    \(Y\)が従う確率密度関数\(g(y)\)を求めよ。
    (1) \(Y=3X+2\)
    (2) \(Y=X^2\)
    (3) \(Y^2=X\) (0 ≤ \(x\) ≤ 1)
    (4) \(logY=X\)

    確率変数の変換をマスターする解法

    解法は以下の通りで実施します。これはどんな2変数の確率変換でも同様の方法でイケます!

    1. \(y=x\)の式を\(x=y\)の式に直す
    2. \(f(x)\)の\(x\)に\(y\)の式をそのまま代入する
    3. 積分の式から\(x\)⇒\(y\)に変形する
      \(dx=\frac{dx}{dy}dy\)と変形(これは高校数学レベル)
    4. 積分の式から\(x\)⇒\(y\)に変化するが、2次式の変換独自のやり方(難しくないのでご安心ください!)をまずは暗記!
      \( \displaystyle \int_{x_1}^{x_2} f(x)dx \) =\(\displaystyle \int_{y_1}^{y_2} (f(+\sqrt{y}) \frac{dx}{d(y+)} – f(-\sqrt{y}) \frac{dx}{d(y-)})dy \)
    5. 確率密度関数\(g(y)\)は(右辺)の積分から
      \(\displaystyle \int_{y_1}^{y_2} g(y) dy \)=\(\displaystyle \int_{y_1}^{y_2} (f(yの式) \frac{dx}{dy}dy \)

    完全に同じ解き方でイケます!

    解法

    では、実際に解いてみましょう。

    1. \(y=x\)の式を\(x=y\)の式に直す

    【例題1】では、

    (1) \(Y=3X+2\) では、
    \(X=\frac{Y-2}{3}\)
    に変形します。

    (2) \(Y=X^2\)では、
    \(X=±\sqrt{y}\)
    に変形します。

    (3) \(Y^2=X\) (0 ≤ \(x\) ≤ 1) では、
    そのままの
    \(X=Y^2\)
    でOKです。

    (4) \(logY=X\)では、
    そのままの
    \(X= logY \)
    でOKです。

    2. \(f(x)\)の\(x\)に\(y\)の式をそのまま代入する

    \(f(x)\)に代入すると、

    (1) \(Y=3X+2\) では、
    \(f(x)=\frac{3}{4}(1-x^2)\)
    =\(f(\frac{y-2}{3})=\frac{3}{4}(1-(\frac{y-2}{3})^2)\)

    (2) \(Y=X^2\)では、
    \(f(x)=\frac{3}{4}(1-x^2)\)
    =\(f(±\sqrt{y})=\frac{3}{4}(1-(±\sqrt{y})^2)\)

    (3) \(Y^2=X\) (0 ≤ \(x\) ≤ 1) では、
    \(f(x)=\frac{3}{4}(1-x^2)\)
    =\(f(y^2)=\frac{3}{4}(1-(y^2)^2)\)

    (4) \(logY=X\)では、
    \(f(x)=\frac{3}{4}(1-(logy)^2)\)

    4問とも同じ1つの解法でOKです、

    3. 積分の式から\(x\)⇒\(y\)に変形する

    xの範囲からyの範囲に変えます。

    問い 変換 下端 上端
    (1) x -1 1
    y(\(=3x+2\)) -1 5
    (2) x -1 1
    y(\(=x^2\)) 0 1
    (3) x 0 1
    y(\(y^2=x\)) 0 1
    (4) x -1 1
    y(\(x=logY\)) 1/e e

    4.確率密度関数\(g(y)\)は(右辺)の積分から導出

    (1) \(Y=3X+2\) では、
    \( \displaystyle \int_{-1}^{1} f(x)dx \) =\(\displaystyle \int_{-1}^{5} \frac{3}{4}(1-(\frac{y-2}{3})^2) \frac{dx}{dy} dy\)
    =\(\displaystyle \int_{-1}^{5} \frac{3}{4}(1-(\frac{y-2}{3})^2) \frac{1}{3} dy\)
    =\(\displaystyle \int_{-1}^{5} g(y) dy\)

    よって
    \(g(y)= \frac{1}{4}(1-(\frac{y-2}{3})^2)\)
    できましたね!

    (2) \(Y=X^2\)では、
    \( \displaystyle \int_{-1}^{1} f(x)dx \) =\(\displaystyle \int_{0}^{1} \frac{3}{4}(1-(±\sqrt{y})^2) \frac{dx}{dy} dy\)
    =\(\displaystyle \int_{0}^{1} (\frac{3}{4}(1-y)\frac{dx}{dy+}-\frac{3}{4}(1-y)\frac{dx}{dy-})dy\)
    =\(\displaystyle \int_{0}^{1} (\frac{3}{4}(1-y)(\frac{1}{2\sqrt{y}})-\frac{3}{4}(1-y) (-\frac{1}{2\sqrt{y}}))dy\)
    =\(\displaystyle \int_{0}^{1} (\frac{3}{4}(1-y)(\frac{1}{\sqrt{y}})dy\)
    =\(\displaystyle \int_{0}^{1} g(y) dy\)

    よって
    \(g(y)= \frac{3}{4}(1-y)\frac{1}{\sqrt{y}}\)
    できましたね!

    (3) \(Y^2=X\) (0 ≤ \(x\) ≤ 1) では、
    \( \displaystyle \int_{0}^{1} f(x)dx \) =\(\displaystyle \int_{0}^{5} \frac{3}{4}(1-(y^2)^2) \frac{dx}{dy} dy\)
    =\(\displaystyle \int_{0}^{1} \frac{3}{4}(1-y^4) 2y dy\)
    =\(\displaystyle \int_{0}^{1} g(y) dy\)

    よって
    \(g(y)= \frac{3}{2}(1-y^4) y \)
    できましたね!

    (4) \(logY=X\)では、
    \( \displaystyle \int_{-1}^{1} f(x)dx \) =\(\displaystyle \int_{1e}^{e} \frac{3}{4}(1-(logy)^2) \frac{dx}{dy} dy\)
    =\(\displaystyle \int_{1/e}^{e} \frac{3}{4}(1-(logy)^2) \frac{1}{y} dy\)
    =\(\displaystyle \int_{1/e}^{e} g(y) dy\)

    よって
    \(g(y)= \frac{3}{4}(1-(logy)^2) \frac{1}{y} \)
    できましたね!

    一連の解法を見ていただきました。これで解けます!

    いろいろな関数を使って、確率変数の変換を見て慣れていきましょう!

    本記事の内容は、ほぼ高校数学で解けましたね!

    まとめ

    「1変数の確率変数の変換がよくわかる(応用編)」を解説しました。

    • ①確率変数の変換は高校数学でほぼイケます!大丈夫!
    • ➁公式見ても理解しにくいから無視していい!
    • ➂実例を使って理解する!

error: Content is protected !!